The collective oscillation of carriers--the plasmon--in graphene has many desirable properties, including tunability and low loss. However, in single-layer graphene, the dependence on carrier concentration of both the plasmonic resonance frequency and magnitude is relatively weak, limiting its applications in photonics. Here, we demonstrate transparent photonic devices based on graphene/insulator stacks, which are formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, then patterning them together into photonic-crystal-like structures. We show experimentally that the plasmon in such stacks is unambiguously non-classical. Compared with doping in single-layer graphene, distributing carriers into multiple graphene layers effectively enhances the plasmonic resonance frequency and magnitude, which is different from the effect in a conventional semiconductor superlattice and is a direct consequence of the unique carrier density scaling law of the plasmonic resonance of Dirac fermions. Using patterned graphene/insulator stacks, we demonstrate widely tunable far-infrared notch filters with 8.2 dB rejection ratios and terahertz linear polarizers with 9.5 dB extinction ratios. An unpatterned stack consisting of five graphene layers shields 97.5% of electromagnetic radiation at frequencies below 1.2 THz. This work could lead to the development of transparent mid- and far-infrared photonic devices such as detectors, modulators and three-dimensional metamaterial systems.
We observe infrared laser excited photoconductivity from a single carbon nanotube incorporated as the channel of an ambipolar field-effect
transistor (FET). Electron−hole pairs are generated within the nanotube molecule, and the carriers are separated by an applied electric field
between the source and drain contacts. The photocurrent shows resonances whose energies are in agreement with the energies of exciton
states of semiconducting nanotubes of the appropriate diameter. The photocurrent is maximized for photons polarized along the direction of
the carbon nanotube. Thus, the nanotube FET acts as a polarized photodetector with a diameter 1000 times smaller than the wavelength of
the light it detects and has an estimated quantum efficiency of >10%. A photovoltage is observed when an asymmetric band lineup due to two
nonequivalent Schottky barriers or an asymmetric coupling of the gate to the nanotube is present.
Graphene is a promising candidate for optoelectronic applications such as
photodetectors, terahertz imagers, and plasmonic devices. The origin of
photoresponse in graphene junctions has been studied extensively and is
attributed to either thermoelectric or photovoltaic effects. In addition, hot
carrier transport and carrier multiplication are thought to play an important
role. Here we report the intrinsic photoresponse in biased but otherwise
homogeneous graphene. In this classic photoconductivity experiment, the
thermoelectric effects are insignificant. Instead, the photovoltaic and a
photo-induced bolometric effect dominate the photoresponse due to hot
photocarrier generation and subsequent lattice heating through electron-phonon
cooling channels respectively. The measured photocurrent displays polarity
reversal as it alternates between these two mechanisms in a backgate voltage
sweep. Our analysis yields elevated electron and phonon temperatures, with the
former an order higher than the latter, confirming that hot electrons drive the
photovoltaic response of homogeneous graphene near the Dirac point
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.