Motivation Cancer develops through a process of clonal evolution in which an initially healthy cell gives rise to progeny gradually differentiating through the accumulation of genetic and epigenetic mutations. These mutations can take various forms, including single-nucleotide variants (SNVs), copy number alterations (CNAs) or structural variations (SVs), with each variant type providing complementary insights into tumor evolution as well as offering distinct challenges to phylogenetic inference. Results In this work, we develop a tumor phylogeny method, TUSV-ext, which incorporates SNVs, CNAs and SVs into a single inference framework. We demonstrate on simulated data that the method produces accurate tree inferences in the presence of all three variant types. We further demonstrate the method through application to real prostate tumor data, showing how our approach to coordinated phylogeny inference and clonal construction with all three variant types can reveal a more complicated clonal structure than is suggested by prior work, consistent with extensive polyclonal seeding or migration. Availability and implementation https://github.com/CMUSchwartzLab/TUSV-ext. Supplementary information Supplementary data are available at Bioinformatics online.
Motivation Computational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation (SV) events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate. Results In the present work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization (miFISH) to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. By integrating such information in an integer linear programming (ILP) framework, we demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence, and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data. Availability Source code is available on Github at https://github.com/CMUSchwartzLab/FISH_deconvolution
Motivation Cells contain dozens of major organelles and thousands of other structures, many of which vary extensively in their number, size, shape and spatial distribution. This complexity and variation dramatically complicates the use of both traditional and deep learning methods to build accurate models of cell organization. Most cellular organelles are distinct objects with defined boundaries that do not overlap, while the pixel resolution of most imaging methods is not sufficient to resolve these boundaries. Thus while cell organization is conceptually object-based, most current methods are pixel-based. Using extensive image collections in which particular organelles were fluorescently-labeled, deep learning methods can be used to build conditional autoencoder models for particular organelles. A major advance occurred with the use of a U-net approach to make multiple models all conditional upon a common reference, unlabeled image, allowing the relationships between different organelles to be at least partially inferred. Results We have developed improved GAN-based approaches for learning these models and have also developed novel criteria for evaluating how well synthetic cell images reflect the properties of real images. The first set of criteria measure how well models preserve the expected property that organelles do not overlap. We also developed a modified loss function that allows retraining of the models to minimize that overlap. The second set of criteria uses object-based modeling to compare object shape and spatial distribution between synthetic and real images. Our work provides the first demonstration that, at least for some organelles, deep learning models can capture object-level properties of cell images. Availability http://murphylab.cbd.cmu.edu/Software/2022_insilico. Supplementary information Supplementary data are available at Bioinformatics online.
Computational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation (SV) events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate. In the present work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization (miFISH) to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. We demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence, and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.