Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer. Long noncoding RNAs (lncRNAs) are thought to play a critical role in cancer development. Recently, lncRNA CASC9 was shown to be dysregulated in many cancer types, but the mechanisms whereby this occurs remain largely unknown. In this study, we found that CASC9 was significantly upregulated in ESCC tissues, with further analysis revealing that elevated CASC9 expression was associated with ESCC prognosis and metastasis. Furthermore, we found that CASC9 knockdown significantly repressed ESCC migration and invasion in vitro and metastasis in nude mice in vivo. A microarray analysis and mechanical experiments indicated that CASC9 preferentially affected gene expression linked to ECM–integrin interactions, including LAMC2, an upstream inducer of the integrin pathway. We demonstrated that LAMC2 was consistently upregulated in ESCC and promoted ESCC metastasis. LAMC2 overexpression partially compromised the decrease of cell migration and invasion capacity in CASC9 knockdowns. In addition, we found that both CASC9 and LAMC2 depletion reduced the phosphorylation of FAK, PI3K, and Akt, which are downstream effectors of the integrin pathway. Moreover, the reduction in phosphorylation caused by CASC9 depletion was rescued by LAMC2 overexpression, further confirming that CASC9 exerts a pro-metastatic role through LAMC2. Mechanistically, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) assay indicated that CASC9 could bind with the transcriptional coactivator CREB-binding protein (CBP) in the nucleus. Chromatin immunoprecipitation (ChIP) assay additionally illustrated that CASC9 increased the enrichment of CBP and H3K27 acetylation in the LAMC2 promoter, thereby upregulating LAMC2 expression. In conclusion, we demonstrate that CASC9 upregulates LAMC2 expression by binding with CBP and modifying histone acetylation. Our research reveals the prognostic and pro-metastatic roles for CASC9 in ESCC, suggesting that CASC9 could serve as a biomarker for prognosis and a target for metastasis treatment.
BackgroundAbnormal expression of numerous long non-coding RNAs (lncRNAs) has been reported in esophageal squamous cell carcinoma (ESCC) recently, but the great majority of their roles and mechanisms remain largely unclear. We aim to identify the critical ESCC-associated lncRNAs and elucidate the functions and mechanisms in detail.MethodsMicroarrays were used to analyze the differentially expressed lncRNAs in ESCC tissues. qRT-PCR was used to verify the result of microarrays. The effects of the most up-regulated lncRNA, cancer susceptibility candidate 9(CASC9), on cell growth, proliferation and cell cycle were investigated by in vivo and in vitro assays. Microarrays and recovery tests were used to discover the regulatory targets of CASC9. RNA FISH and subcellular fractionation assays were used to detect the subcellular location of CASC9. Finally, the mechanism of CASC9 regulating PDCD4 was explored by RIP, RNA-protein pull down and ChIP assays.ResultsESCC tissue microarrays showed that CASC9 was the most up-regulated lncRNA. qRT-PCR analysis indicated that CASC9 expression was positively associated with tumor size and TNM stage, and predicted poor overall survival of ESCC patients. Knockdown of CASC9 inhibited ESCC cell growth in vitro and tumorigenesis in nude mice. Furthermore interfering CASC9 decreased cell proliferation and blocked cell cycle G1/S transition. CASC9-associated microarrays indicated that PDCD4 might be the target of CASC9. Consistent with this, PDCD4 expression was negatively associated with CASC9 expression in ESCC tissues and predicted good prognosis. Manipulating CASC9 expression in ESCC cells altered both PDCD4 mRNA and protein levels and cell cycle arrest caused by CASC9 knockdown could be rescued by suppressing PDCD4 expression. CASC9 located both in the nucleus and cytoplasm. Mechanistically, enhancer of zeste homolog2 (EZH2) could bind to both CASC9 and PDCD4 promoter region. Interfering CASC9 reduced the enrichment of EZH2 and H3K27me3 in the PDCD4 promoter region.ConclusionsOur study firstly demonstrates that lncRNA CASC9 functions as an oncogene by negatively regulating PDCD4 expression through recruiting EZH2 and subsequently altering H3K27me3 level. Our study implicates lncRNA CASC9 as a valuable biomarker for ESCC diagnosis and prognosis.Electronic supplementary materialThe online version of this article (10.1186/s12943-017-0715-7) contains supplementary material, which is available to authorized users.
BackgroundmiR-34a functions as an important tumor suppressor during the process of carcinogenesis. However, the mechanism of miR-34a dysregulation in human malignancies has not been well elucidated. Our study aimed to further investigate the regulation mechanism of miR-34a.ResultsWe found that overexpression of NF-kappa B p65 subunit could increase miR-34a levels in EC109, an esophageal squamous cancer cell line, while ectopic expression of DN IkappaB leaded to a significant reduction of miR-34a expression. Bioinformatics analysis suggested three putative KB sites in promoter region of miR-34a gene. Mutation two of these KB sites impaired p65 induced miR-34a transcriptional activity. Chromatin immunoprecipitation and electrophoretic mobility shift assays both showed that NF-kappaB could specifically bind to the third KB site located in miR-34a promoter. In addition, we found that overexpression of NF-kappaB p65 could not successfully induce miR-34a expression in esophageal cancer cell lines with mutant p53 or decreased p53. Reporter assay further showed that NF-kappaB-induced miR-34a transcriptional activity was reduced by p53 impairment. Nevertheless, CHIP analysis suggested binding of NF-kappaB to miR-34a promoter was not affected in cells with mutant p53.ConclusionsOur work indicates a novel mechanism of miR-34a regulation that NF-kappaB could elevate miR-34a expression levels through directly binding to its promoter. And wildtype p53 is responsible for NF-kappaB-mediated miR-34a transcriptional activity but not for NF-kappaB binding. These findings might be helpful in understanding miR-34a abnormality in human malignancies and open new perspectives for the roles of miR-34a and NF-kappaB in tumor progression.
Esophageal cancer is one of the leading causes of cancer-related mortality because of poor prognosis. Long noncoding RNAs (lncRNAs) have been gradually demonstrated to play critical roles in cancer development. We identified a novel long noncoding RNA named linc00460 by microarray analysis using esophageal squamous cell carcinoma (ESCC) clinical samples, which has not been studied before. Our research indicated that linc00460 was overexpressed in the majority of tumor tissues and ESCC cell lines. Linc00460 expression was positively correlated with ESCC TNM stage, lymph node metastasis, and predicted poor prognosis. In vitro experiments showed that linc00460 depletion suppressed ESCC cell growth through regulating cell proliferation and cell cycle; in additional, linc00460 depletion accelerated ESCC cell apoptosis. We further revealed that linc00460 overexpression was manipulated by transcriptional co-activator CBP/P300 through histone acetylation. Given the high expression and important biological functions of linc00460, we suggest that linc00460 works as an oncogene and might be a valuable prognostic biomarker for ESCC diagnosis and treatment.
Previous studies on esophageal squamous cell carcinoma (ESCC) indicated that it contains much dysregulation of microRNAs (miRNAs). DNA hypermethylation in the miRNA 5 0 regulatory region is a mechanism that can account for the downregulation of miRNA in tumors (Esteller, N Engl J Med 2008;358:1148-59). Among those dysregulated miRNAs, miR-203, miR-34b/c, miR-424 and miR-129-2 are embedded in CpG islands, as is the promoter of miR-34a. We investigated their methylation status in ESCC by bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP). The methylation frequency of miR-203 and miR-424 is the same in carcinoma and in the corresponding non-tumor tissues. The methylation ratio of miR-34a, miR-34b/c and miR-129-2 is 66.7% (36/54), 40.7% (22/54) and 96.3% (52/54), respectively in ESCC, which are significantly higher than that in the corresponding non-tumor tissues(p < 0.01). Quantitative RT-PCR analysis in clinical samples suggested that CpG island methylation is significantly correlated with their low expression in ESCC, 5-aza-2 0 -deoxycytidine (DAC) treatment partly recovered their expression in EC9706 cell line. We conclude that CpG island methylation of miR-34a, miR-34b/c and miR-129-2 are frequent events and important mechanism for their low expression in ESCC. DNA methylation changes have been reported to occur early in carcinogenesis and are potentially good early indicators of carcinoma (Laird, Nat Rev Cancer 2003;3:253-66). The high methylation ratio of miR-129-2 indicated its potential as a methylation biomarker in early diagnosis of ESCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.