Wax deposition is a severe flow assurance challenge that threatens waxy crude oil production and transportation. For wax remediation, pipeline pigging is the most widely used technique. However, the elusiveness of wax removal mechanism and the lack of reliable methods to evaluate wax breaking force and wax removal efficiency easily trigger pig stalling and wax blockage in field pigging operations. Modeling wax breaking force and wax removal efficiency, therefore, promotes the pigging confidence. This Review seeks to clarify the current picture of wax removal research in crude oil pipeline pigging. Relevant wax deposit properties including wax layer thickness and strength are discussed. Wax removal mechanisms are summarized from perspectives of wax–pig interaction, macroscopic force response, and scenarios with oil flow. Prediction models of wax breaking force and wax removal efficiency are analyzed comprehensively. Pig geometry optimization using this model is given. In addition, the key roles of wax deposit strength, viscoelasticity and thixotropy, foam pig investigation, and wax plug prediction are highlighted for guiding future endeavors in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.