Ethylene vinyl acetate copolymer (EVA) was modified by expandable graphite (EG) and polyphosphoric acid (PPA) in melt state and the obtained EVA/EG/PPA composite was studied regarding its fire behavior, thermal endurance, water resistivity, processability, and mechanical property. The outcomes evince that the combination of EG and PPA in proper mass ratio can improve fire retardancy, thermal stability, processability, and reduce smoke and toxic gas releases of EVA upon combustion significantly. The EG/PPA combination exhibits very high flame retardant efficiency to EVA in that only 10 wt% loading is enough to make EVA obtain V‐0 rating in UL‐94 test. Moreover, the flame‐retarded EVA/EG/PPA composite displays excellent water resistance and acceptable mechanical property. The EVA/EG/PPA (90/7.5/2.5) composite can produce coherent intumescent char on composite surface, which has good heat endurance and hinders heat transmission from fire to interior of composite. The flame retardation occurs in condensed phase and the intumescent char plays a pivotal role. The presence of PPA endows EVA composite with good melt flowability, which has presented a striking contrast to other flame retardants.Highlights
The combination of EG and PPA has very high flame retardant efficiency to EVA.
The EVA/EG/PPA composite has better fire safety and processability than EVA.
The EVA/EG/PPA composite still maintains acceptable mechanical property.
The expanded char from EVA/EG/PPA composite hinders heat transfer effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.