Background Graves’ disease (GD) is a typical organ-specific autoimmune disease. Intestinal flora plays a pivotal role in immune homeostasis and autoimmune disease development. However, the association and mechanism between intestinal flora and GD remain elusive. Objective To investigate the association and mechanism between intestinal flora and GD. Methods We recruited 58 initially untreated GD patients and 63 healthy individuals in the study. The composition and metabolic characteristics of the intestinal flora in GD patients and the causal relationship between intestinal flora and GD pathogenesis were assessed using 16S rRNA gene sequencing, targeted/untargeted metabolomics, and fecal microbiota transplantation. Results The composition, metabolism, and inter-relationships of the intestinal flora were also changed, particularly the significantly reduced short-chain fatty acid (SCFA)-producing bacteria and SCFAs. The YCH46 strain of Bacteroides fragilis could produce propionic acid and increase Treg cell numbers while decreasing Th17 cell numbers. Transplanting the intestinal flora of GD patients significantly increased GD incidence in the GD mouse model. Additionally, there were 3 intestinal bacteria genera (Bacteroides, Alistipes, Prevotella) could distinguish GD patients from healthy individuals with 85% accuracy. Conclusions Gut dysbiosis contributes to a Treg/Th17 imbalance through the pathway regulated by propionic acid and promotes the occurrence of GD, together with other pathogenic factors. Bacteroides, Alistipes, and Prevotella have great potential to serve as adjunct markers for GD diagnosis. This study provided valuable clues for improving immune dysfunction of GD patients using B. fragilis and illuminated the prospects of microecological therapy for GD as an adjunct treatment.
Rationale: High-salt diet is one of the most important risk factors for hypertension. Intestinal flora has been reported to be associated with high salt–induced hypertension (hSIH). However, the detailed roles of intestinal flora in hSIH pathogenesis have not yet been fully elucidated. Objective: To reveal the roles and mechanisms of intestinal flora in hSIH development. Methods and Results: The abovementioned issues were investigated using various techniques including 16S rRNA gene sequencing, untargeted metabolomics, selective bacterial culture, and fecal microbiota transplantation. We found that high-salt diet induced hypertension in Wistar rats. The fecal microbiota of healthy rats could dramatically lower blood pressure (BP) of hypertensive rats, whereas the fecal microbiota of hSIH rats had opposite effects. The composition, metabolism, and interrelationship of intestinal flora in hSIH rats were considerably reshaped, including the increased corticosterone level and reduced Bacteroides and arachidonic acid levels, which tightly correlated with BP. The serum corticosterone level was also significantly increased in rats with hSIH. Furthermore, the above abnormalities were confirmed in patients with hypertension. The intestinal Bacteroides fragilis could inhibit the production of intestinal-derived corticosterone induced by high-salt diet through its metabolite arachidonic acid. Conclusions: hSIH could be transferred by fecal microbiota transplantation, indicating the pivotal roles of intestinal flora in hSIH development. High-salt diet reduced the levels of B fragilis and arachidonic acid in the intestine, which increased intestinal-derived corticosterone production and corticosterone levels in serum and intestine, thereby promoting BP elevation. This study revealed a novel mechanism different from inflammation/immunity by which intestinal flora regulated BP, namely intestinal flora could modulate BP by affecting steroid hormone levels. These findings enriched the understanding of the function of intestinal flora and its effects on hypertension.
Renal fibrosis participates in the progression of hypertension-induced kidney injury. The effect of SIRT3, a member of the NAD+-dependent deacetylase family, in hypertensive nephropathy remains unclear. In this study, we found that SIRT3 was reduced after angiotensin II (AngII) treatment both in vivo and in vitro. Furthermore, SIRT3-knockout mice aggravated hypertension-induced renal dysfunction and renal fibrosis via chronic AngII infusion (2000 ng/kg per minute for 42 days). On the contrary, SIRT3-overexpression mice attenuated AngII-induced kidney injury compared with wild-type mice. Remarkably, a co-localization of SIRT3 and KLF15, a kidney-enriched nuclear transcription factor, led to SIRT3 directly deacetylating KLF15, followed by decreased expression of fibronectin and collagen type IV in cultured MPC-5 podocytes. In addition, honokiol (HKL), a major bioactive compound isolated from Magnolia officinalis (Houpo), suppressed AngII-induced renal fibrosis through activating SIRT3-KLF15 signaling. Taken together, our findings implicate that a novel SIRT3-KLF15 signaling may prevent kidney injury from hypertension and HKL can act as a SIRT3-KLF15 signaling activator to protect against hypertensive nephropathy.
Intestinal flora plays an important role in atherosclerosis. Tongxinluo, as a multi-target Chinese medicine to improve atherosclerosis, whether it can improve atherosclerosis by affecting the intestinal flora is worth exploring. We established a vulnerable plaque model of atherosclerosis in New Zealand white rabbits by high cholesterol diet and balloon injury (HCB), and performed Tongxinluo intervention. We detected the level of inflammation by immunohistochemistry, Western Blot, and ELISA, analyzed plaque characteristics by calculating the vulnerability index, and analyzed the changes of gut microbiota and metabolites by 16S rRNA gene sequencing and untargeted metabolomic sequencing. The results showed that Tongxinluo intervention improved plaque stability, reduced inflammatory response, inhibited NLRP3 inflammatory pathway, increased the relative abundance of beneficial bacteria such as Alistipes which reduced by HCB, and increased the content of beneficial metabolites such as trans-ferulic acid in feces. Through correlation analysis, we found that some metabolites were significantly correlated with some bacteria and some inflammatory factors. In particular, the metabolite trans-ferulic acid was also significantly positively correlated with plaque stability. Our further studies showed that trans-ferulic acid could also inhibit the NLRP3 inflammatory pathway. In conclusion, Tongxinluo can improve plaque stability and reduce inflammation in atherosclerotic rabbits, which may be achieved by modulating intestinal flora and intestinal metabolism. Our study provides new views for the role of Tongxinluo in improving atherosclerotic vulnerable plaque, which has important clinical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.