Fundamental research into the Li-O2 battery system has gone into high gear, gaining momentum because of its very high theoretical specific energy. Much progress has been made toward understanding the discharge mechanism, but the mechanism of the oxygen evolution reaction (OER) on charge (i.e., oxidation) remains less understood. Here, using operando X-ray diffraction, we show that oxidation of electrochemically generated Li2O2 occurs in two stages, but in one step for bulk crystalline (commercial) Li2O2, revealing a fundamental difference in the OER process depending on the nature of the peroxide. For electrochemically generated Li2O2, oxidation proceeds first through a noncrystalline lithium peroxide component, followed at higher potential by the crystalline peroxide via a Li deficient solid solution (Li(2-x)O2) phase. Anisotropic broadening of the X-ray Li2O2 reflections confirms a platelet crystallite shape. On the basis of the evolution of the broadening during charge, we speculate that the toroid particles are deconstructed one platelet at a time, starting with the smallest sizes that expose more peroxide surface. In the case of in situ charged bulk crystalline Li2O2, the Li vacancies preferentially form on the interlayer position (Li1), which is supported by first-principle calculations and consistent with their lower energy compared to those located next to oxygen (Li2). The small actively oxidizing fraction results in a gradual reduction of the Li2O2 crystallites. The fundamental insight gained in the OER charge mechanism and its relation to the nature of the Li2O2 particles is essential for the design of future electrodes with lower overpotentials, one of the key challenges for high performance Li-air batteries.
Structural, magnetic and magnetocaloric properties of Mn 2-x Cr x Sb compounds have been studied. In these compounds a first order magnetic phase transition from the ferrimagnetic to the antiferromagnetic state occurs with decreasing temperature, giving rise to giant inverse magnetocaloric effects that can be tuned over a wide temperature interval through changes in substitution concentration. Entropy changes as high as 7.5 J/kgK have been observed, and a composition independent entropy change is obtained for several different concentrations/working temperatures, making these compounds suitable candidates for a composite working material.
Neutron-diffraction experiments on the (Mn,Fe) 2 (P,Si)-type compounds have shown a site preference of Si atoms in the hexagonal structure. The degree of ordering of Si depends on the Si/P ratio, while it is independent of the Mn/Fe ratio. The ferromagnetic-paramagnetic magnetoelastic transition is closely related to the size of the magnetic moment on the 3f site. A preferred occupation of Si atoms on the 2c site stabilizes and decreases the magnetic moment on the 3f and 3g site, respectively, which is supported by our first-principles density functional theory calculations. This effect, together with the contribution from the Si substitution-induced changes in the interatomic distances, leads to a phase transition that is tunable in temperature and degree of first order in Mn 1.25 Fe 0.70 P 1−x Si x compounds. These results provide us with further insight into the relationship between the magnetoelastic phase transition and the local atomic coordination.
Magnetic cooling is a highly efficient refrigeration technique with the potential to replace the traditional vapor compression cycle. It is based on the magnetocaloric effect, which is associated with the temperature change of a material when placed in a magnetic field. We present experimental evidence for the origin of the giant entropy change found in the most promising materials, in the form of an electronic reconstruction caused by the competition between magnetism and bonding. The effect manifests itself as a redistribution of the electron density, which was measured by X-ray absorption and diffraction on MnFe(P,Si,B). The electronic redistribution is consistent with the formation of a covalent bond, resulting in a large drop in the Fe magnetic moments. The simultaneous change in bond length and strength, magnetism, and electron density provides the basis of the giant magnetocaloric effect. This new understanding of the mechanism of first order magneto-elastic phase transitions provides an essential step for new and improved magnetic refrigerants
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.