High‐performance microwave absorbers with special features are desired to meet the requirements of more complex modern service environments, especially corrosive environments. Therefore, high‐efficiency microwave absorbers with corrosion resistance should be developed urgently. Herein, a 3D NiAl‐layered double hydroxide/graphene (NiAl‐LDH/G) composite synthesized by atomic‐layer‐deposition‐assisted in situ growth is presented as an anticorrosive microwave absorber. The content of NiAl‐LDH in the composite is optimized to achieve impedance matching. Furthermore, under the cooperative effects of the interface polarization loss, conduction loss, and 3D porous sandwich‐like structure, the optimal NiAl‐LDH/G shows excellent microwave absorption performance with a minimum reflection loss of −41.5 dB and a maximum effective absorption bandwidth of 4.4 GHz at a loading of only 7 wt% in epoxy. Remarkably, the encapsulation effect of NiAl‐LDH can restrain the galvanic corrosion owing to graphene. The epoxy coating with the NiAl‐LDH/G microwave absorber on carbon steel exhibits long‐term corrosion resistance, owing to the synergetic effect of the superior impermeability of graphene and the chloridion‐capture capacity of the NiAl‐LDH. The NiAl‐LDH/G composite is a promising anticorrosive microwave absorber, and the findings of this study may motivate the development of functional microwave absorbers that meet the demands of anticorrosive performance of coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.