A novel selective fluorescent chemosensor based on an 8-hydroxyquinoline-appended fluorescein derivative (L1) was synthesized and characterized. Once combined with Cu(2+), it displayed high specificity for sulfide anion. Among the various anions, only sulfide anion induced the revival of fluoresecence of L1, which was quenched by Cu(2+), resulting in "off-on"-type sensing of sulfide anion. What's more, the sensor was retrievable to indicate sulfide anions with Cu(2+), and S(2-), in turn, increased. With the addition of Cu(2+), compound L1 could give rise to a visible pink-to-yellow color change and green fluorescence quenching. The resulting yellow solution could change to pink and regenerate to green fluorescence immediately upon the addition of sulfide anion; however, no changes were observed in the presence of other anions, including CN(-), P(2)O(7)(4-), and other forms of sulfate, making compound L1 an extremely selective and efficient sulfide chemosensor. The signal transduction occurs via reversible formation-separation of complex L1Cu and CuS. What's more, the biological imaging study has demonstrated that the chemosensor can detect sulfur anions in biological systems at a relatively low concentration.
The structures as well as electronic and optical properties of the ZnO/graphene composites were theoretically studied by density functional theory calculations. Graphene was composited on monolayer and bilyer ZnO as well as wurtzite ZnO thick slab (0001) surface with zinc and oxygen terminated. We calculated and analyzed the binding energies, difference charge densities, PDOSs, work functions, and optical properties of the composites. It was found that the electronic properties of graphene were retained when graphene combined with ZnO layers. Graphene on the ZnO thick slab (0001) surface with zinc terminated shows obvious electronic doping and enhanced work function. On the contrary, graphene on the ZnO thick slab (0001) surface with oxygen terminated suggested hole doping and decreased work function. The optical properties were also tunable by changing interface structure.
Orchardgrass (Dactylis glomerata L.) is a long-lived, cool-season forage grass that is commonly used for hay production. Despite its economic importance, orchardgrass genome remains relatively unexplored. In this study, we used Illumina RNA sequencing to identify gene-associated molecular markers, including simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), as well as heat stress-induced differentially expressed genes (DEGs) in two orchardgrass genotypes, 'Baoxing' (heat resistant) and '01998' (heat susceptible). Approximately 163 million high-quality trimmed reads were generated from 207 million raw reads using the Illumina HiSeq 2000 platform. A total of 126,846 unigenes were obtained after de novo assembly of the trimmed reads, and 40,078 unigenes were identified as coding sequences (CDSs). Based on the assembled unigenes, 669,300 high-quality SNPs, including 416,099 transitions and 257,736 transversions, were contained in 75,875 unigenes. In addition, a total of 8475 microsatellites were detected in 7764 unigenes. When placed under heat stress, the total number of DEGs in 'Baoxing' (3527) was higher than in '01998' (2649), indicating that in comparison with heat-susceptible '01998', heat-resistant 'Baoxing' seems to have more unigenes that respond to heat stress. The high-throughput transcriptome sequencing of orchardgrass under heat stress provides useful information for gene identification and for the development of SNP and SSR molecular markers. The comparison of DEGs under different periods of heat stress allowed us to identify a wealth of candidate DEGs that can be further analysed in order to determine the genetic mechanisms underlying heat tolerance in orchardgrass.
The first non-pincer-type mononuclear scandium alkylidene complexes were synthesized and structurally characterized. These complexes exhibited short Sc-C bond lengths and even one of the shortest reported to date (2.1134(18) Å). The multiple character of the Sc-C bond was highlighted by a DFT calculation. This was confirmed by experimental reactivity study where the complex underwent [2+1] cycloaddition with elemental selenium and [2+2] cycloaddition with imine. DFT calculation also revealed a strong nucleophilic behavior of the alkylidene complex that was experimentally demonstrated by the C-H bond activation of phenylacetylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.