An interface for CE-ESI-MS that decouples both the electrical and the solution flow rate requirements of the separation and ionization processes is presented. The interface uses a tapered and beveled stainless steel hollow needle surrounding the separation capillary terminus so that the inside of the electrode acts as the CE outlet vial and the outside tip acts as the electrospray emitter. No capillary pre-treatment is required, enabling the use of capillaries with any type of surface modification. A chemical modifier solution is introduced through a second capillary connected to the needle via a tee junction and can be used to improve the compatibility of the CE BGE with electrospray. The flow rate of modifier solution can be as low as 0.1 microL/min, much less than that in a typical sheath-flow interface, thus minimizing dilution of the CE effluent in order to maximize sensitivity. The presence of the modifier solution also allows the use of neutral-coated capillaries for protein analysis by CE-MS without using an assisting pressure, despite the absence of EOF under these conditions. The interface is easily integrated into a commercial CE instrument, such that all operations can be carried out by the automated controls. Compared with a commercial sheath-flow CE-MS interface operating under optimized conditions, LODs for amino acids were, on average, improved fivefold.
Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and have been implicated in various psychiatric disorders. Yet functional human serotonin neurons are not available for in vitro studies. Through manipulation of the WNT pathway, we demonstrate efficient differentiation of human pluripotent stem cells (hPSCs) to cells resembling central serotonin neurons, primarily those located in the rhombomeric segments 2–3 of the rostral raphe, which participate in high-order brain functions. The serotonin neurons express a series of molecules essential for serotonergic development, including tryptophan hydroxylase 2, exhibit typical electrophysiological properties and release serotonin in an activity-dependent manner. When treated with the FDA-approved drugs tramadol and escitalopram oxalate, they release or uptake serotonin in a dose- and time-dependent manner, suggesting the utility of these cells for the evaluation of drug candidates.
The Asian citrus psyllid (Diaphorina citri) is the insect vector responsible for the worldwide spread of ‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that D. citri transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the D. citri immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a D. citri haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a D. citri myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with D. citri proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening.
Recently developed carbonyl-reactive aminoxy tandem mass tag (aminoxyTMT) reagents enable multiplexed characterization and quantitative comparison of structurally complex glycans between different biological samples. Compared to some previously reported isotopic labeling strategies for glycans, the use of the aminoxyTMT method features a simple labeling procedure, excellent labeling efficiency, and reduced spectral complexity at the MS(1) level. Presence of the tertiary amine functionality in the reporter region of the aminoxyTMT labels leads to increased ionization efficiency of the labeled glycans thus improving electrospray ionization (ESI)-mass spectrometry (MS) detection sensitivity. The use of the labeling reagent also makes electrophoretic separation of the labeled neutral and acidic glycans feasible. In this work, we characterized the ESI and collision induced dissociation (CID) behavior of the aminoxyTMT-labeled neutral and sialylated glycans. For the high-mannose N-glycans and small sialylated oligosaccharides, CID fragmentation of [M + Na + H](2+) provides the most informative MS(2) spectra for both quantitative and qualitative analysis. For complex N-glycans, MS(3) of the protonated Y1(H) ion can be used for relative quantification without interference from the HexNAc fragments. Online capillary electrophoresis (CE)-ESI-MS/MS analyses of multiplexed aminoxyTMT-labeled human milk oligosaccharides (HMOs) and different types of N-glycans released from glycoprotein standards were demonstrated. Improved resolution and quantification accuracy of the labeled HMO isomers was achieved by coupling CE with traveling wave ion mobility (TWIM)-CID-MS/MS. N-Glycans released from human serum protein digests were labeled with six-plex aminoxyTMT and subjected to CE-ESI-MS/pseudo-MS(3) analysis, which demonstrated the potential utility of this glycan relative quantification platform for more complex biological samples.
Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.