GNSS-R (Global Navigation Satellite System-Reflectometry) has been demonstrated to be a new and powerful tool to sense soil moisture in recent years. Multi-antenna pattern and single-antenna pattern have been proposed regarding how to receive and process reflected signals. Great efforts have been made concerning ground-based and air-borne observations. Meanwhile, a number of satellite-based missions have also been implemented. For the in-depth study of soil moisture remote sensing by the technique of GNSS-R, regardless of the extraction methods of the reflected signals or the types of the observation platform, three key issues have to be determined: The specular reflection point, the spatial resolution and the detection depth in the soil. However, in current literatures, there are no comprehensive explanations of the above three key issues. This paper conducts theoretical analysis and formula derivation, aiming to systematically and quantitatively determine the extent of soil moisture being detected in three dimensions from the above-mentioned aspects. To further explain how the three factors behave in the specific application, the results of two application scenarios are shown: (1) a ground-based GPS measurement in Marshall, Colorado, US from the Plate Boundary Observatory, corresponding to single-antenna pattern. The relative location of the specular reflection points, the average area of the First Fresnel Ellipse Clusters and the sensing depth of the time-series soil moisture are analyzed, and (2) an aviation experiment conducted in Zhengzhou to retrieve soil moisture content, corresponding to the multi-antenna pattern. The spatial distribution of soil moisture estimation with a certain resolution based on the flight tracks and the relevant sensing depth are manifested. For remote sensing using GNSS reflected signals, BeiDou is different from GPS mainly in the carrier frequency. Therefore, the results of this study can provide references for China’s future development of the BeiDou-R technique.
This paper proposes a practical algorithm for the reduction of measurement errors due to drift in Micro-ElectroMechanical System (MEMS) gyros which is used for mobile robot. Drift in MEMS gyros will cause the unbounded growth of errors in the estimation of yaw, which makes it nearly useless in applications that require good accuracy for longer time. The method used in this paper is called "Fuzzy Heuristic Drift Reduction" (FHDR). To verify the validity of the algorithm, the paper presents results of experiments, in which a gyro-equipped indoor mobile robot walked for several minutes. FHDR reduced the final heading error over all of these drives by one order of magnitude compared of nonuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.