The modulation of electron density is an effective option for efficient alternative electrocatalysts. Here, p‐n junctions are constructed in 3D free‐standing FeNi‐LDH/CoP/carbon cloth (CC) electrode (LDH=layered double hydroxide). The positively charged FeNi‐LDH in the space‐charge region can significantly boost oxygen evolution reaction. Therefore, the j at 1.485 V (vs. RHE) of FeNi‐LDH/CoP/CC achieves ca. 10‐fold and ca. 100‐fold increases compared to those of FeNi‐LDH/CC and CoP/CC, respectively. Density functional theory calculation reveals OH− has a stronger trend to adsorb on the surface of FeNi‐LDH side in the p‐n junction compared to individual FeNi‐LDH further verifying the synergistic effect in the p‐n junction. Additionally, it represents excellent activity toward water splitting. The utilization of heterojunctions would open up an entirely new possibility to purposefully regulate the electronic structure of active sites and promote their catalytic activities.
Large-scale arrayed ZnO crystals with a series of novel morphologies, including tower-like, flower-like, and tube-like samples, have been successfully fabricated by a simple aqueous solution route. The morphology and orientation of the obtained ZnO crystal arrays can be conveniently tailored by changing the reactants and experimental conditions. For example, the tower-like ZnO crystal arrays were obtained in a reaction solution system including zinc salt, ammonia, ammonium salt, and thiourea, and the orientation of these tower-like crystals could be controlled by the contents of these reactants. Flower-like ZnO arrays were obtained at lower temperatures, and tube-like ZnO arrays were obtained by ultrasonic pretreatment of the reaction system. The growth mechanism of the tower-like and tube-like ZnO crystals was investigated by FESEM. The results show that tower-like crystals grow layer by layer, while tube-like crystals grow from active nanowires. Ultrasonic pretreatment is proved to be effective in promoting the formation of active nuclei, which have important effects on the formation of the tube-like ZnO crystals. In addition, large-scale arrays of these ZnO crystals can be successfully synthesized onto various substrates such as amorphous glass, crystalline quartz, and PET. This implies this chemical method has a wide application in the fabrication of nano-/microscale devices.
On the basis of Kirkendall Effect, high symmetric 18-facet polyhedral nanocrystals of Cu7S4 with a hollow nanocage could be converted from cubic nanocrystals of Cu2O in an aqueous media. The presence of organic additives makes the surface energy of {110} smaller than those of {100} and {111}. The growth of nanocrystals along the normal direction of highest energy surface {100} leads to the formation of a 18-facet polyhedron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.