The molecular basis for the severity and rapid spread of the COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. ORF8 is a rapidly evolving accessory protein that has been proposed to interfere with immune responses. The crystal structure of SARS-CoV-2 ORF8 was determined at 2.04-Å resolution by X-ray crystallography. The structure reveals a ∼60-residue core similar to SARS-CoV-2 ORF7a, with the addition of two dimerization interfaces unique to SARS-CoV-2 ORF8. A covalent disulfide-linked dimer is formed through an N-terminal sequence specific to SARS-CoV-2, while a separate noncovalent interface is formed by another SARS-CoV-2−specific sequence, 73YIDI76. Together, the presence of these interfaces shows how SARS-CoV-2 ORF8 can form unique large-scale assemblies not possible for SARS-CoV, potentially mediating unique immune suppression and evasion activities.
Summary AP-1 is a clathrin adaptor complex that sorts cargo between the trans-Golgi network and endosomes. AP-1 recruitment to these compartments requires Arf1-GTP. The crystal structure of the tetrameric core of AP-1 in complex with Arf1-GTP, together with biochemical analyses, shows that Arf1 activates cargo binding by unlocking AP-1. Unlocking is driven by two molecules of Arf1 that bridge two copies of AP-1 at two interaction sites. The GTP-dependent switch I and II regions of Arf1 bind to the N-terminus of the β1 subunit of one AP-1 complex, while the back side of Arf1 binds to the central part of the γ subunit trunk of a second AP-1 complex. A third Arf1 interaction site near the N-terminus of the γ subunit is important for recruitment, but not activation. These observations lead to a model for the recruitment and activation of AP-1 by Arf1.
BackgroundExposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water is a worldwide public health concern. Several mechanisms by which arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure.ObjectiveWe examined the evidence supporting the roles of the three major epigenetic mechanisms—DNA methylation, histone modification, and microRNA (miRNA) expression—in arsenic toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary to clarify epigenetic and other mechanisms in humans.Data sources and synthesisWe conducted a PubMed search of arsenic exposure and epigenetic modification through April 2010 and summarized the in vitro and in vivo research findings, from both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity.ConclusionsArsenic exposure has been shown to alter methylation levels of both global DNA and gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological advancements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.