In this paper, we consider exponential integrators for semilinear Poisson systems. Two types of exponential integrators are constructed, one preserves the Poisson structure, and the other preserves energy. Numerical experiments for semilinear Possion systems obtained by semi-discretizing Hamiltonian PDEs are presented. These geometric exponential integrators exhibit better long time stability properties as compared to non-geometric integrators, and are computationally more efficient than traditional symplectic integrators and energy-preserving methods based on the discrete gradient method.
<p style='text-indent:20px;'>A variational integrator of arbitrarily high-order on the special orthogonal group <inline-formula><tex-math id="M2">\begin{document}$ SO(n) $\end{document}</tex-math></inline-formula> is constructed using the polar decomposition and the constrained Galerkin method. It has the advantage of avoiding the second order derivative of the exponential map that arises in traditional Lie group variational methods. In addition, a reduced Lie–Poisson integrator is constructed and the resulting algorithms can naturally be implemented by fixed-point iteration. The proposed methods are validated by numerical simulations on <inline-formula><tex-math id="M3">\begin{document}$ SO(3) $\end{document}</tex-math></inline-formula> which demonstrate that they are comparable to variational Runge–Kutta–Munthe-Kaas methods in terms of computational efficiency. However, the methods we have proposed preserve the Lie group structure much more accurately and and exhibit better near energy preservation.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.