In the present work, a portable and low-cost planar waveguide based resonance light scattering (RLS) scanner (termed as: PW-RLS scanner) has been developed for microarray detection. The PW-RLS scanner employs a 2 × 4 white light emitting diode array (WLEDA) as the excitation light source, a folded optical path with a complementary metal oxide semiconductor (CMOS) as the signal/image acquisition device and stepper motors with gear drives as the mechanical drive system. The biological binding/recognizing events on the microarray can be detected with an evanescent waveguide-directed illumination and light-scattering label (e.g., nanoparticles) while the microarray slide acts as an evanescent waveguide substrate. The performance of the as-developed PW-RLS scanner has been evaluated by analyzing type 2 diabetes mellitus (T2DM) risk genes. Highly selective and sensitive (less than 1% allele frequency at the attomole-level) T2DM risk gene detection is achieved using single-stranded DNA functionalized gold nanoparticles (ssDNA-GNPs) as detection probes. Additionally, the successful simultaneous analysis of 15 T2DM patient genotypes suggests that the device has great potential for the realization of a personalized diagnostic test for a given disease or patient follow-up.
Seismic communication might promise to revolutionize the theory of seismic waves. However, one of the greatest challenges to its widespread adoption is the difficulty of signal extraction because the seismic waves in the vibration environments, such as seas, streets, city centers and subways, are very complex. Here, we employ segmented correlation technology with Morse code (SCTMC), which extracts the target signal by cutting the collected data into a series of segments and makes these segments cross-correlate with the decoded signal to process the collected data. To test the effectiveness of the technology, a seismic communication system composed of vibroseis sources and geophones was built in an environment full of other vibration signals. Most notably, it improves the signal-to-noise ratio (SNR), extending the relay distance and suppressing other vibration signals by using technology to deal with seismic data generated by the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.