Background The nutritional status of COVID‐19 patients is unknown. This study evaluates the clinical and nutritional characteristics of severe and critically ill patients infected with SARS‐CoV‐2, and investigates the relationship between nutritional risk and clinical outcomes. Methods A retrospective, observational study was conducted at West Campus of Union Hospital in Wuhan. Patients confirmed with SARS‐CoV‐2 infection by a nucleic acid‐positive test and identified as severe or critically ill, were enrolled in this study. Clinical data and outcomes information was collected and nutritional risk was assessed by using Nutritional Risk Screening 2002 (NRS). Results Totally, 413 patients were enrolled in this study, including 346 severe patients and 67 critically ill patients. Most patients, especially critically ill patients, had significant changes in nutrition‐related parameters and inflammatory markers. As for nutritional risk, the critically ill patients had significantly higher proportion of high NRS scores ( P <0.001), which were correlated with inflammatory and nutrition‐related markers. Among 342 patients with NRS score ≥3, only 84 (25%) received nutritional support. The critically ill patients and the patients with higher NRS score had a higher risk of mortality and longer stay in hospital. In logistic regression models, one unit increased in NRS score was associated with the risk of mortality increased by 1.23 times (adjusted OR = 2.23, 95% CI : 1.10, 4.51, P = 0.026). Conclusions Most severe and critically ill patients infected with SARS‐CoV‐2 are at nutritional risk. The patients with higher nutrition risk have worse outcome, and require nutritional therapy. This article is protected by copyright. All rights reserved
Background: The association of trimethylamine-N-oxide (TMAO), a microbiota-dependent metabolite from dietary choline and carnitine, with type 2 diabetes was inconsistent. Objective: We evaluated the association of plasma TMAO with newly diagnosed type 2 diabetes and the potential modification of TMAO-generating enzyme flavin monooxygenase 3 (FMO3) polymorphisms. Design: This was an age-and sex-matched case-control study of 2694 participants: 1346 newly diagnosed cases of type 2 diabetes and 1348 controls. Concentrations of plasma TMAO were measured, and FMO3 E158K polymorphisms (rs2266782) were genotyped. Results: Medians (IQRs) of plasma TMAO concentration were 1.47 mmol/L (0.81-2.20 mmol/L) for controls and 1.77 mmol/L (1.09-2.80 mmol/L) for type 2 diabetes cases. From the lowest to the highest quartiles of plasma TMAO, the multivariable adjusted ORs of type 2 diabetes were 1.00 (reference), 1.38 (95% CI: 1.08, 1.77), 1.64 (95% CI: 1.28, 2.09), and 2.55 (95% CI: 1.99, 3.28) (Ptrend , 0.001); each SD of ln-transformed plasma TMAO was associated with a 38% (95% CI: 26%, 51%) increment in ORs of type 2 diabetes. The FMO3 rs2266782 polymorphism was not associated with type 2 diabetes. The positive association between plasma TMAO and type 2 diabetes was consistent in each rs2266782 genotype group, and no significant interaction was observed (P = 0.093). Conclusions: Our results suggested that higher plasma TMAO was associated with increased odds of newly diagnosed type 2 diabetes and that this association was not modified by the FMO3 rs2266782 polymorphism. This study was registered at clinicaltrials.gov as NCT03130894.Am J Clin Nutr 2017;106:888-94.
BackgroundFood frequency questionnaire (FFQ) is a reliable tool to estimate dietary intake in large nutritional epidemiological studies, but there is lack of a current and validated FFQ for use in urban Chinese pregnant women. This study aimed to evaluate the reproducibility and validity of a semi-quantitative FFQ designed to estimate dietary intake among urban pregnant women in a cohort study conducted in central China.MethodsIn the reproducibility study, a sample of 123 healthy pregnant women completed the first FFQ at 12–13 weeks gestation and the second FFQ 3–4 weeks later. To validate the FFQ, the pregnant women completed three 24-h recalls (24HRs) between the intervals of two FFQs.ResultsThe intraclass correlation coefficients of two administrations of FFQ for foods ranged from 0.23 (nuts) to 0.49 (fruits) and for nutrients from 0.24 (iodine) to 0.58 (selenium) and coefficients were all statistically significant. The unadjusted Pearson correlation coefficients between two methods ranged from 0.28 (beans) to 0.53 (fruits) for foods and from 0.15 (iodine) to 0.59 (protein) for nutrients. Energy-adjusted and de-attenuated correlation coefficients for foods ranged from 0.35 (beans) to 0.56 (fruits) and for nutrients from 0.11 (iodine) to 0.63 (protein), and all correlations being statistically significant except for iodine, sodium and riboflavin. On average, 67.0 % (51.2 %-80.5 %) of women were classified by both methods into the same or adjacent quintiles based on their food intakes, while 68.5 % (56.1 %-77.2 %) of women were classified as such based on nutrient intakes. Extreme misclassifications were very low for both foods (average of 2.0 %) and nutrients (average of 2.2 %). Bland-Altman Plots also showed reasonably acceptable agreement between two methods.ConclusionThis FFQ is a reasonably reliable and valid tool for assessing most food and nutrient intakes of urban pregnant women in central China.
The age-related loss of muscle mass and muscle function known as sarcopenia is a primary contributor to the problems faced by the old people. Sarcopenia has been a major public health problem with high prevalence in many countries. The related underlying molecular mechanisms of sarcopenia are not completely understood. This review is focused on the potential mechanisms and current research strategies for sarcopenia with the aim of facilitating the recognition and treatment of age-related sarcopenia. Previous studies suggested that protein synthesis and degradation, autophagy, impaired satellite cell activation, mitochondria dysfunction, and other factors associated with muscle weakness and muscle degeneration may be potential molecular pathophysiology of sarcopenia. Importantly, we also prospectively highlight that exosomes (small vesicles) as carriers can regulate muscle regeneration and protein synthesis according to recent researches. Dietary strategies and exercise represent the interventions that can also alleviate the progression of sarcopenia. At last, building on recent studies pointing to exosomes with the roles in increasing muscle regeneration, mediating the beneficial effects of exercise, and serving as messengers of intercellular communication and as carriers for research strategies of many diseases, we propose that exosomes could be a potential research direction or strategies of sarcopenia in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.