In this paper, we combined linguistic complexity and (dis)fluency features with pretrained language models for the task of Alzheimer's disease detection of the 2021 ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech) challenge. An accuracy of 83.1% was achieved on the test set, which amounts to an improvement of 4.23% over the baseline model. Our best-performing model that integrated component models using a stacking ensemble technique performed equally well on cross-validation and test data, indicating that it is robust against overfitting.
Point cloud semantic segmentation, a crucial research area in the 3D computer vision, lies at the core of many vision and robotics applications. Due to the irregular and disordered of the point cloud, however, the application of convolution on point clouds is challenging. In this article, we propose the “coordinate convolution,” which can effectively extract local structural information of the point cloud, to solve the inapplicability of conventional convolution neural network (CNN) structures on the 3D point cloud. The “coordinate convolution” is a projection operation of three planes based on the local coordinate system of each point. Specifically, we project the point cloud on three planes in the local coordinate system with a joint 2D convolution operation to extract its features. Additionally, we leverage a self‐encoding network based on image semantic segmentation U‐Net structure as the overall architecture of the point cloud semantic segmentation algorithm. The results demonstrate that the proposed method exhibited excellent performances for point cloud data sets corresponding to various scenes.
In this paper, we combined linguistic complexity and (dis)fluency features with pretrained language models for the task of Alzheimer's disease detection of the 2021 ADReSSo (Alzheimer's Dementia Recognition through Spontaneous Speech) challenge. An accuracy of 83.1% was achieved on the test set, which amounts to an improvement of 4.23% over the baseline model. Our best-performing model that integrated component models using a stacking ensemble technique performed equally well on cross-validation and test data, indicating that it is robust against overfitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.