AFF4, an essential core of SEC, was overexpressed in HNSCC tissue and cell lines. AFF4 promoted the proliferation, migration, invasion and tumor-initiation capacity by regulating SOX2 in HNSCC cells, indicating AFF4 may serve as a potential therapeutic target of HNSCC.
Abstract. The occurrence of resistance to mitomycin C (MMC) often limits its clinical effectiveness. Combination therapy thus is employed to overcome this treatment resistance. The present study aimed to establish a novel J82 bladder cancer cell line so as to study the effect of inhibition of aquaporin 1 (AQP-1) on chemotherapy sensitivity of J82 bladder cancer cells. A novel J82 bladder cancer cell line whose expression of AQP-1 is inhibited was established through transfection of J82 cells with newly constructed recombinant plasmid. The resulting cell line was designated J82-short hairpin (sh)AQP1 and was subjected to further analyses together with J82 cell line. Reverse transcription-polymerase chain reaction was used to quantify the expression of AQP-1mRNA in the cells; cell viability was analyzed with MTT assay and apoptosis was measured by flow cytometry. The expression of cell proliferation and cell apoptosis-associated proteins, proliferating cell nuclear antigen (PCNA), B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3, were detected by Western blot. A statistically significant decrease in the transcription and expression of AQP1 was observed in the J82-shAQP1 cells as compared with J82 cells. J82-shAQP1 cells treated by MMC, also had a lower cell viability than J82 cells treated by MMC and showed enhanced apoptosis. Western blot analysis revealed J82-shAQP1 cells treated by MMC had less expression of PCNA, lower bcl-2/Bax ratio and more expression of caspase-3 as compared with the J82 cells treated by MMC. Selective inhibition of AQP-1 enhanced MMC chemotherapy sensitivity of J82 bladder cancer cells, suggesting combination of AQP-1 inhibition with MMC treatment as a promising treatment strategy to overcome bladder cancer treatment resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.