Graph processing recently received intensive interests in light of a wide range of needs to understand relationships. It is well-known for the poor locality and high memory bandwidth requirement. In conventional architectures, they incur a significant amount of data movements and energy consumption which motivates several hardware graph processing accelerators. The current graph processing accelerators rely on memory access optimizations or placing computation logics close to memory. Distinct from all existing approaches, we leverage an emerging memory technology to accelerate graph processing with analog computation.This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suitable for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms.GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01× (up to 132.67×) speedup and a 33.82× energy saving on geometric mean compared to a CPU baseline system. Compared to GPU, GRAPHR achieves 1.69× to 2.19× speedup and consumes 4.77× to 8.91× less energy. GRAPHR gains a speedup of 1.16× to 4.12×, and is 3.67× to 10.96× more energy efficiency compared to PIM-based architecture.
With the emergence of a spectrum of high-end mobile devices, many applications that formerly required desktop-level computation capability are being transferred to these devices. However, executing Deep Neural Networks (DNNs) inference is still challenging considering the high computation and storage demands, specifically, if real-time performance with high accuracy is needed. Weight pruning of DNNs is proposed, but existing schemes represent two extremes in the design space: non-structured pruning is fine-grained, accurate, but not hardware friendly; structured pruning is coarse-grained, hardware-efficient, but with higher accuracy loss.In this paper, we advance the state-of-the-art by introducing a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in the design space. With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency. In other words, our method achieves the best of both worlds, and is desirable across theory/algorithm, compiler, and hardware levels. The proposed PatDNN is an endto-end framework to efficiently execute DNN on mobile devices with the help of a novel model compression techniquepattern-based pruning based on an extended ADMM solution framework-and a set of thorough architecture-aware compiler/code generation-based optimizations, i.e., filter kernel reordering, compressed weight storage, register load redundancy elimination, and parameter auto-tuning. Evaluation results demonstrate that PatDNN outperforms three state-ofthe-art end-to-end DNN frameworks, TensorFlow Lite, TVM, and Alibaba Mobile Neural Network with speedup up to 44.5×, 11.4×, and 7.1×, respectively, with no accuracy compromise. Real-time inference of representative large-scale DNNs (e.g., VGG-16, ResNet-50) can be achieved using mobile devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.