Endothelial activation plays an essential role in the pathogenesis of sepsis-induced acute lung injury, however, the detailed regulatory mechanisms remain largely unknown. Here, we reported that TRIM47, an E3 ubiquitin ligase of the tripartite motif-containing protein family, was highly expressed in vascular endothelial cells. TRIM47-deficient mice were effectively resistant to lipopolysaccharide (LPS)-induced acute lung injury and death by attenuating pulmonary inflammation. TRIM47 was upregulated during TNFα-induced endothelial activation in vitro. Knockdown of TRIM47 in endothelial cells inhibited the transcription of multiple pro-inflammatory cytokines, reduced monocyte adhesion and the expression of adhesion molecules, and suppressed the secretion of IL-1β and IL-6 in endothelial cells. By contrast, overexpression of TRIM47 promoted inflammatory response and monocyte adhesion upon TNFα stimulation. In addition, TRIM47 was able to activate the NF-κB and MAPK signaling pathways during endothelial activation. Furthermore, our experiments revealed that TRIM47 resulted in endothelial activation by promoting the K63-linked ubiquitination of TRAF2, a key component of the TNFα signaling pathway. Taken together, our studies demonstrated that TRIM47 as a novel activator of endothelial cells, promoted LPS-induced pulmonary inflammation and acute lung injury through potentiating the K63-linked ubiquitination of TRAF2, which in turn activates NF-κB and MAPK signaling pathways to trigger an inflammatory response in endothelial cells.
Inflammation-induced activation and dysfunction of endothelial cells play an important role in the pathology of multiple vascular diseases. Nicaraven, a potent hydroxyl radical scavenger, has recently been found to have anti-inflammatory roles. However, the mechanism of its action is not fully understood. Here we investigated the effects of Nicaraven on TNFα-induced inflammatory response in human umbilical vein endothelial cells (HUVECs) and explore the underlying mechanisms related to NF-κB signaling pathway. Our results showed that Nicaraven significantly reduced the reactive oxygen species production after TNFα stimulation. Nicaraven suppressed TNFα-induced mRNA expression of multiple adhesion molecules and pro-inflammatory cytokines, including VCAM-1, ICAM-1, E-selectin, MCP-1, TNFα, IL-1β, IL-6 and IL-8. In addition, Nicaraven inhibited monocyte adhesion and reduced the protein levels of VCAM-1 and ICAM-1. Mechanistically, Nicaraven prevented TNFα-induced activation of NF-κB signaling pathway by suppressing the phosphorylation of NF-κB p65, IκBα, and IKKα/β, stabilizing IκBα, and inhibiting the translocation of p65 from cytosol to nucleus. Finally, we showed that Nicaraven improved the functions of endothelial cells, seen as the up-regulation of endothelial nitric oxide synthase and increased nitric oxide levels. Our findings indicated that Nicaraven effectively inhibits TNFα-induced endothelial activation and inflammatory response at least partly through inhibiting NF-κB signaling pathway.
Brain-type glycogen phosphorylase (pygb) is one of the rate-limiting enzymes in glycogenolysis that plays a crucial role in the pathogenesis of type 2 diabetes mellitus. Here we investigated the role of pygb in high-glucose (HG)-induced cardiomyocyte apoptosis and explored the underlying mechanisms, by using the specific pygb inhibitors or pygb siRNA. Our results show that inhibition of pygb significantly attenuates cell apoptosis and oxidative stress induced by HG in H9c2 cardiomyocytes. Inhibition of pygb improved glucose metabolism in cardiacmyocytes, as evidenced by increased glycogen content, glucose consumption, and glucose transport. Mechanistically, pygb inhibition activates the Akt–GSK-3β signaling pathway and suppresses the activation of NF-κB in H9c2 cells exposed to HG. Additionally, pygb inhibition promotes the expression and the translocation of hypoxia-inducible factor-1α (HIF-1α) after HG stimulation. However, the changes in glucose metabolism and HIF-1α activation mediated by pygb inhibition are significantly reversed in the presence of the Akt inhibitor MK2206. In conclusion, this study found that inhibition of pygb prevents HG-induced cardiomyocyte apoptosis via activation of Akt–HIF-α.
Vitamin K, a necessary nutritional supplement for human, has been found to exhibit antiinflammatory activity. In the present study, we investigated the effects of vitamin K family on lipopolysaccharide (LPS) plus nigericin induced pyroptosis and explored the underlying mechanism of its action in THP-1 monocytes. Results showed that vitamin K3 treatment significantly suppressed THP-1 pyroptosis, but not vitamin K1 or K2, as evidenced by increased cell viability, reduced cellular LDH release and improved cell morphology. Vitamin K3 inhibited NLRP3 expression, caspase-1 activation, GSDMD cleavage and IL-1β secretion in pyrophoric THP-1 cells. In addition, vitamin K3 inhibited the pro-inflammatory signaling pathways including NF-κB and JNK. Vitamin K3 treatment also attenuated tissue damage and reduced serum LDH, IL-1β and IL-6 levels in LPS-induced systemic inflammation of mice. The reduced MPO activityand F4/80 expression indicated that vitamin K3 effectively reduced the infiltration of neutrophils and macrophages. Moreover, NLRP3 expression in monocytes/macrophages were also decreased in vitamin K3-treatedmice after LPS challenge. These findings suggest that vitamin K3 potently alleviates systemic inflammation and organ injury via inhibition of pyroptosis in monocytes and may serve as a novel therapeutic strategy for patients with inflammatory diseases.
Background After neoadjuvant therapy, most of the lymph nodes (LNs) will shrink and disappear in patients with rectal cancer. However, LNs that are still detectable on MRI carry a risk of metastasis. This study aimed to evaluate the performance of the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) criterion (short-axis diameter ≥ 5 mm) in diagnosing malignant LNs in patients with rectal cancer after neoadjuvant therapy, and whether nodal morphological characteristics (including shape, border, signal homogeneity, and enhancement homogeneity) could improve the diagnostic efficiency for LNs ≥ 5 mm. Methods This retrospective study included 90 patients with locally advanced rectal cancer who underwent surgery after neoadjuvant therapy and performed preoperative MRI. Two radiologists independently measured the short-axis diameter of LNs and evaluated the morphological characteristics of LNs ≥ 5 mm in consensus. With a per node comparison with histopathology as the reference standard, a ROC curve was performed to evaluate the diagnostic performance of the size criterion. For categorical variables, either a χ2 test or Fisher’s exact test was used. Results A total of 298 LNs were evaluated. The AUC for nodal size in determining nodal status was 0.81. With a size cutoff value of 5 mm, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 65.9%, 87.0%, 46.8%, 93.6% and 83.9%, respectively. No significant differences were observed in any of the morphological characteristics between benign and malignant LNs ≥ 5 mm (all P > 0.05). Conclusions The ESGAR criterion demonstrated moderate diagnostic performance in identifying malignant LNs in patients with rectal cancer after neoadjuvant therapy. It was effective in determining the status of LNs < 5 mm but not for LNs ≥ 5 mm, and the diagnostic efficiency could not be improved by considering nodal morphological characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.