The induction of pluripotent stem cells (iPSCs) by defined factors is poorly understood stepwise. Here, we show that histone H3 lysine 9 (H3K9) methylation is the primary epigenetic determinant for the intermediate pre-iPSC state, and its removal leads to fully reprogrammed iPSCs. We generated a panel of stable pre-iPSCs that exhibit pluripotent properties but do not activate the core pluripotency network, although they remain sensitive to vitamin C for conversion into iPSCs. Bone morphogenetic proteins (BMPs) were subsequently identified in serum as critical signaling molecules in arresting reprogramming at the pre-iPSC state. Mechanistically, we identified H3K9 methyltransferases as downstream targets of BMPs and showed that they function with their corresponding demethylases as the on/off switch for the pre-iPSC fate by regulating H3K9 methylation status at the core pluripotency loci. Our results not only establish pre-iPSCs as an epigenetically stable signpost along the reprogramming road map, but they also provide mechanistic insights into the epigenetic reprogramming of cell fate.
Oncogenic transcription factors are known to mediate the conversion of somatic cells to tumour or induced pluripotent stem cells (iPSCs). Here we report c-Jun as a barrier for iPSC formation. c-Jun is expressed by and required for the proliferation of mouse embryonic fibroblasts (MEFs), but not mouse embryonic stem cells (mESCs). Consistently, c-Jun is induced during mESC differentiation, drives mESCs towards the endoderm lineage and completely blocks the generation of iPSCs from MEFs. Mechanistically, c-Jun activates mesenchymal-related genes, broadly suppresses the pluripotent ones, and derails the obligatory mesenchymal to epithelial transition during reprogramming. Furthermore, inhibition of c-Jun by shRNA, dominant-negative c-Jun or Jdp2 enhances reprogramming and replaces Oct4 among the Yamanaka factors. Finally, Jdp2 anchors 5 non-Yamanaka factors (Id1, Jhdm1b, Lrh1, Sall4 and Glis1) to reprogram MEFs into iPSCs. Our studies reveal c-Jun as a guardian of somatic cell fate and its suppression opens the gate to pluripotency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.