The accurate evaluation and prediction of highway network traffic state can provide effective information for travelers and traffic managers. Based on the deep learning theory, this paper proposes an evaluation and prediction model of highway network traffic state, which consists of a Fuzzy C-means (FCM) algorithm-based traffic state partition model, a Long Short-Term Memory (LSTM) algorithm-based traffic state prediction model, and a K-Means algorithm-based traffic state discriminant model. The highway network in Hebei Province is employed as a case study to validate the model, where the traffic state of highway network is analyzed using both predicted data and real data. The dataset contains 536,823 pieces of data collected by 233 continuous observation stations in Hebei Province from September 5, 2016, to September 12, 2016. The analysis results show that the model proposed in this paper has a good performance on the evaluation and prediction of the traffic state of the highway network, which is consistent with the discriminant result using the real data.
The “white hole effect” alters the driving environment during a tunnel’s exit phase, making it more difficult and uncertain for drivers to access information and control their behavior, thereby endangering traffic safety. Consequently, the driving risk at the exit of a long spiral tunnel served as the subject of this study, and the Jinjiazhuang spiral tunnel served as the object of the natural vehicle driving experiment. Following the theory of a non-linear autoregressive dynamic neural network, a vehicle speed prediction model based on driver characteristics was developed for the exit phase of the tunnel, taking driver expectations and behavioral changes into account. It also classifies the driver’s behavior during the tunnel’s exit phase to assess the risk posed by the driver’s behavior during the tunnel’s exit phase and determine a dynamic and safe comfort speed. The study’s results indicate that the driver’s behavioral load changed significantly as the vehicle approached the tunnel exit. At the exit of the spiral tunnel, the vehicle’s actual speed was 71 km/h, which is below the speed limit of 80 km/h. This demonstrates that the expected change in the driver’s behavior in the tunnel exit phase was substantial. Therefore, setting the emotional safety and comfort speed so that the driver maintains a smooth comfort level in the tunnel exit phase can reduce the tunnel exit driving risk. The results of this study provide a benchmark for tunnel traffic safety and lay the groundwork for further development of vehicle risk warning settings for the tunnel’s exit phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.