Magnetic labels are one of the most important components in giant magnetoresistance (GMR) biodetection systems and affect detection signals directly. Many researchers have improved the detection performance of GMR biosensors by optimizing the properties of their magnetic labels, including size, shape, coercivity, and magnetization. In most studies, magnetic labels are usually spherical, and there is little research involving alternative shapes. In this work, we prepared spindlelike Fe3O4 nanoparticles (NPs) by hydrothermal and heating reduction. The as-prepared magnetic NPs were incorporated in the GMR biodetection system. An ultralow limitation of detection concentration of 0.05 ng/ml was achieved, which can be attributed to the shape anisotropy of the spindlelike magnetic particles. A wide linear work range, 0.05–1000 ng/ml, can be achieved by the use of the spindlelike Fe3O4 NPs in GMR biodetection. Moreover, the NPs exhibit good repeatability after multiple measurements, which can be attributed to the NPs’ stable and effective magnetic diffusion field. The use of spindlelike Fe3O4 NPs as magnetic labels in this work provides a new method for improving the sensitivity and repeatability of GMR biodetection.
Flexible magnetic sensors are attracting more and more attention because of their application in wearable devices. In this paper, Metglas/polyvinylidene fluoride (PVDF) bilayer composite with good flexibility was fabricated to evaluate its applicability as a flexible in-plane magnetic sensor. The magnetoelectric (ME) coupling characteristics and sensing performance of the sample were investigated under different test conditions, including different AC and DC magnetic field, and changing the direction of the magnetic field and the bending degree of the sample. The sample shows a large ME coefficient with a value of 176.41 V cm−1 Oe. The sensitivity, linearity and deviation of the sample are 892.96 mV Oe−1, 0.99965 and ±2% for the AC magnetic field, and 157.6 mV Oe−1, 0.99444 and ±5% for the DC magnetic field, respectively, and it shows excellent stability over repetitions. Moreover, the sample was gradually rotated anticlockwise in the magnetic fields. The output voltage of the sample varies with the rotation angle and has a good symmetry in plane, which is described well by a sine function. In addition, the clamping effect of the sample was studied. Even when bent, the sample still maintains an excellent and stable performance. The sensitivity and linearity of the sample with a bent angle of 23.5° are 254.37 mV Oe−1 and 0.99975 for the AC magnetic field, and 28.07 mV Oe−1 and 0.99309 for the DC magnetic field, respectively. The deviation of measurements is small for both the AC and DC magnetic sensors. In summary, the present study shows that the Metglas/PVDF bilayer composite has a good sensing performance and is suitable for = flexible in-plane resonant magnetic sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.