Spatial confinement with a small cavity is known to enhance the signal intensity of laser-induced breakdown spectroscopy. In this study, the optical emission intensity and signal stability in terms of the relative standard deviation of laser-induced plasmas generated from brass samples with and without the presence of small cylindrical cavities were carefully investigated. The cylindrical cavities were prefabricated by drilling on a set of aluminum plates with variable diameters and heights, which were then placed near the sample surface. Both plasma emission intensity and stability were influenced by cavity diameter and height. With increased cavity diameter from 1.5 mm to 6 mm, the emission intensity of the confined plasma initially increased and then decreased. Furthermore, if a suitable cavity size was selected, both line intensity and stability of the confined plasma emission improved. Based on these observed signal characters with varying cavities, the optimized cavity size for the best signal quality of the laser-induced plasma emission on brass sample was obtained.
Toxic metals such as lead and chromium in aqueous solutions have been analyzed simultaneously by laser-induced breakdown spectroscopy (LIBS), in which the ordinary printing paper is used as a liquid absorber which was immerged into Pb(NO3)2 and Cr(NO3)3 aqueous solution to enrich the heavy metals. This method overcomes the drawbacks of splashing and low sensitivity in ordinary LIBS analysis of water, in which a laser beam is directly focused on a liquid surface. A good signal intensity and reproducibility has been demonstrated. The Pb 405.78 nm and Cr 427.48 nm spectral lines are used as the analytical lines. The variation of line intensity with immersion time was investigated. The calibration curve for quantitative measurement of Pb and Cr in water was established, and the detection limits are 0.033 mg/L and 0.026 mg/L respectively, which is about 2-3 orders of magnitude better than that in the ordinary LIBS analysis of heavy metal in solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.