Micro- or nanosized three-dimensional crosslinked polymeric networks have been designed and described for various biomedical applications, including living cell encapsulation, tissue engineering, and stimuli responsive controlled delivery of bioactive molecules. For most of these applications, it is necessary to disintegrate the artificial scaffold into nontoxic residues with smaller dimensions to ensure renal clearance for better biocompatibility of the functional materials. This can be achieved by introducing stimuli-cleavable linkages into the scaffold structures. pH, enzyme, and redox potential are the most frequently used biological stimuli. Moreover, some external stimuli, for example light and additives, are also used to trigger the disintegration of the carriers or their assembly. In this review, we highlight the recent progress in various chemical and physical methods for synthesizing and crosslinking micro- and nanogels, as well as their development for incorporation of cleavable linkages into the network of micro- and nanogels.
Summary
Cucumber, Cucumis sativus L. is the only taxon with 2n = 2x = 14 chromosomes in the genus Cucumis. It consists of two cross‐compatible botanical varieties: the cultivated C. sativus var. sativus and the wild C. sativus var. hardwickii. There is no consensus on the evolutionary relationship between the two taxa. Whole‐genome sequencing of the cucumber genome provides a new opportunity to advance our understanding of chromosome evolution and the domestication history of cucumber. In this study, a high‐density genetic map for cultivated cucumber was developed that contained 735 marker loci in seven linkage groups spanning 707.8 cM. Integration of genetic and physical maps resulted in a chromosome‐level draft genome assembly comprising 193 Mbp, or 53% of the 367 Mbp cucumber genome. Strategically selected markers from the genetic map and draft genome assembly were employed to screen for fosmid clones for use as probes in comparative fluorescence in situ hybridization analysis of pachytene chromosomes to investigate genetic differentiation between wild and cultivated cucumbers. Significant differences in the amount and distribution of heterochromatins, as well as chromosomal rearrangements, were uncovered between the two taxa. In particular, six inversions, five paracentric and one pericentric, were revealed in chromosomes 4, 5 and 7. Comparison of the order of fosmid loci on chromosome 7 of cultivated and wild cucumbers, and the syntenic melon chromosome I suggested that the paracentric inversion in this chromosome occurred during domestication of cucumber. The results support the sub‐species status of these two cucumber taxa, and suggest that C. sativus var. hardwickii is the progenitor of cultivated cucumber.
A systematic cytotoxicity study of layered black phosphorus (BP) is urgently needed before moving forward to its potential biomedical applications. Herein, bulk BP crystals are synthesized and exfoliated into layered BP with different lateral size and thickness. The cytotoxicity of as-exfoliated layered BP is evaluated by a label-free real-time cell analysis technique, displaying a concentration-, size-, and cell type-dependent response. The IC values can vary by 40 and 30 times among the BP sizes and cell types, respectively. BP-1 with the largest lateral size and thickness has the highest cytotoxicity; whereas the smallest BP-3 only shows moderate toxicity. The sensitivity of three tested cell lines follows the sequence of 293T > NIH 3T3 > HCoEpiC. Two possible mechanisms for BP to induce cytotoxicity are proposed and verified: (1) the generation of intracellular reactive oxygen species (ROS) is detected by a ROS sensitive probe using the inverted fluorescence microscopy and flow cytometry; (2) the interaction of layered BP and model cell membrane is examined by quartz crystal microbalance with dissipation, illustrating the disruption of cell membrane integrity especially by the largest BP-1. This systematic study of BP's cytotoxicity will shed light on its future biomedical and environmental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.