Microfluidic techniques allow for the tailored construction of specific microparticles, which are becoming increasingly interesting and relevant. Here, using a microfluidic hole-plate-device and thermal-initiated free radical polymerization, submicrometer polymer particles with a highly textured surface were synthesized. Two types of monomers were applied: (1) methylmethacrylate (MMA) combined with crosslinkers and (2) divinylbenzene (DVB). Surface texture and morphology can be influenced by a series of parameters such as the monomer–crosslinker–solvent composition, surfactants, and additives. Generally, the most structured surfaces with the simultaneously most uniform particles were obtained in the DVB–toluene–nonionic-tensides system. In a second approach, poly-MMA (PMMA) particles were used to build aggregates with bigger polymer particles. For this purpose, tripropyleneglycolediacrylate (TPGDA) particles were synthesized in a microfluidic co-flow arrangement and polymerized by light- irradiation. Then, PMMA particles were assembled at their surface. In a third step, these composites were dispersed in an aqueous acrylamide–methylenebisacrylamide solution, which again was run through a co-flow-device and photopolymerized. As such, entities consisting of particles of three different size ranges—typically 0.7/30/600 µm—were obtained. The particles synthesized by both approaches are potentially suitable for loading with or incorporation of analytic probes or catalysts such as dyes or metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.