The high operating temperature of dielectric capacitors applied in electric vehicles, aerospace and underground exploration require dielectric materials with high temperature resistance and high energy density. Polyimide (PI) turns out...
Precise control over the spatial arrangement of inorganic nanoparticles on a large scale is desirable for the design of functional nanomaterials, sensing, and optical/electronic devices. Although great progress has been recently made in controlling the organization of nanoparticles, there still remains a grand challenge to arrange nanoparticles into highly-ordered arrays over multiple length scales. Here, we report the directed arrangement of inorganic nanoparticles into arrayed structures with long-range order, up to tens of microns, by using hexagonally-packed cylindrical patterns of block copolymer nanosheets self-assembled within collapsed emulsion droplets as scaffolds. This technique can be used to generate nanoparticle arrays with various nanoparticle arrangements, including hexagonal honeycomb structures, periodic nanoring structures, and their combinations. This finding provides an effective route to fabricate diverse nanoparticle arrayed structures for the design of functional materials and devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.