This study was aimed at determining potential effects of apple-derived pectin on weight gain, gut microbiota, gut barrier and metabolic endotoxemia in rat models of diet-induced obesity. The rats received a standard diet (control; Chow group; n = 8) or a high-fat diet (HFD; n = 32) for eight weeks to induce obesity. The top 50th percentile of weight-gainers were selected as diet induced obese rats. Thereafter, the Chow group continued on chow, and the diet induced obese rats were randomly divided into two groups and received HFD (HF group; n = 8) or pectin-supplemented HFD (HF-P group; n = 8) for six weeks. Compared to the HF group, the HF-P group showed attenuated weight gain (207.38 ± 7.96 g vs. 283.63 ± 10.17 g, p < 0.01) and serum total cholesterol level (1.46 ± 0.13 mmol/L vs. 2.06 ± 0.26 mmol/L, p < 0.01). Compared to the Chow group, the HF group showed a decrease in Bacteroidetes phylum and an increase in Firmicutes phylum, as well as subordinate categories (p < 0.01). These changes were restored to the normal levels in the HF-P group. Furthermore, compared to the HF group, the HF-P group displayed improved intestinal alkaline phosphatase (0.57 ± 0.20 vs. 0.30 ± 0.19, p < 0.05) and claudin 1 (0.76 ± 0.14 vs. 0.55 ± 0.18, p < 0.05) expression, and decreased Toll-like receptor 4 expression in ileal tissue (0.76 ± 0.58 vs. 2.04 ± 0.89, p < 0.01). The HF-P group also showed decreased inflammation (TNFα: 316.13 ± 7.62 EU/mL vs. 355.59 ± 8.10 EU/mL, p < 0.01; IL-6: 51.78 ± 2.35 EU/mL vs. 58.98 ± 2.59 EU/mL, p < 0.01) and metabolic endotoxemia (2.83 ± 0.42 EU/mL vs. 0.68 ± 0.14 EU/mL, p < 0.01). These results suggest that apple-derived pectin could modulate gut microbiota, attenuate metabolic endotoxemia and inflammation, and consequently suppress weight gain and fat accumulation in diet induced obese rats.
Background Malnutrition is a common and critical problem that influences outcome in cancer patients. Body composition reflects a patient’s metabolic profile and physiologic reserves, which might be the true determinant of prognosis. In the present study, which aimed to identify valuable new prognostic indicators, we investigated the association between computed tomography–quantified body composition and short-term outcomes after gastrectomy for gastric cancer.MethodsSkeletal muscle index, mean muscle attenuation, and ratio of visceral-to-subcutaneous adipose tissue area (vsr) were calculated from preoperative computed tomography images. Low skeletal muscle index, low mean muscle attenuation, and high vsr were respectively termed “sarcopenia,” “myosteatosis,” and “visceral obesity.” The association of body composition with postoperative complications and serum markers of nutrition and inflammation after radical gastrectomy were analyzed.ResultsThe overall complication rate was significantly higher in the sarcopenia (62.5% vs. 27.3%, p = 0.001) and myosteatosis groups (38.2% vs. 4%, p = 0.002). Patients with visceral obesity had a higher incidence of inflammatory complications (20.3% vs. 6.5%, p = 0.01). Multivariate logistic regression analysis demonstrated that sarcopenia (p = 0.013), myosteatosis (p = 0.017), and low serum retinol-binding protein (p = 0.019) were independent risk factors for overall complications. Compared with control subjects, patients with sarcopenia had lower postoperative levels of serum retinol-binding protein (p = 0.007), and patients with visceral obesity had higher levels of C-reactive protein (p = 0.026).Conclusions Sarcopenia, myosteatosis, and visceral obesity were significantly associated with increased rates of postoperative complications and affected the postoperative nutrition and inflammation status of patients with gastric cancer.
IntroductionGuidelines support the use of enteral nutrition to improve clinical outcomes in critical illness; however, the optimal calorie and protein intake remains unclear. The purpose of this meta-analysis was to quantitatively analyze randomised controlled trials with regard to clinical outcomes related to varying calorie and protein administration in critically ill adult patients.MethodWe searched Medline, EMBASE, and Cochrane databases to identify randomised controlled trials that compared the effects of initially different calorie and protein intake in critical illness. The risk ratio (RR) and weighted mean difference with 95% confidence intervals (CI) were calculated using random-effects models. The primary endpoint was mortality; secondary endpoints included infection, pneumonia, gastrointestinal intolerance, hospital and intensive care unit lengths of stay, and mechanical ventilation days.ResultsIn the eight randomised controlled trials that enrolled 1,895 patients there was no statistical difference between the low-energy and high-energy groups in mortality (RR, 0.90; 95% CI, 0.71 to 1.15; P = 0.40), infection (RR, 1.09; 95% CI, 0.92 to 1.29; P = 0.32), or the risk of gastrointestinal intolerance (RR, 0.84; 95% CI, 0.59 to 1.19; P = 0.33). In subgroup analysis, the low-energy subgroup, fed 33.3 to 66.6% of goal energy, showed a lower mortality than the high-energy group (RR, 0.68; 95% CI, 0.51 to 0.92; P = 0.01). The improvements in mortality and gastrointestinal intolerance were absent when calorie intake was >66.6% of goal energy in the low-energy group. High-energy intake combined with high-protein intake reduced the infections (RR, 1.25; 95% CI, 1.04 to 1.52; P = 0.02); however, when the daily protein intake was similar in both groups, a high-energy intake did not decrease the infections. No statistical differences were observed in other secondary outcomes.ConclusionThis meta-analysis indicates that high-energy intake does not improve outcomes and may increase complications in critically ill patients who are not malnourished. Initial moderate nutrient intake (33.3 to 66.6% of goal energy), compared to high energy, may reduce mortality, and a higher protein intake combined with high energy (≥0.85 g/kg per day) may decrease the infection rate. However, the contribution of energy versus protein intake to outcomes remains unknown.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-015-0902-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.