Abstract-3G networks are currently facing severe traffic overload problems caused by excessive demands of mobile users. Offloading part of the 3G traffic through other forms of networks, such as Delay Tolerant Networks (DTNs), WiFi hotspots, and Femtocells, is a promising solution. However, since these networks can only provide intermittent and opportunistic connectivity to mobile users, utilizing them for 3G traffic offloading may result in a non-negligible delay. As the delay increases, the users' satisfaction decreases. In this paper, we investigate the tradeoff between the amount of traffic being offloaded and the users' satisfaction. We provide a novel incentive framework to motivate users to leverage their delay tolerance for 3G traffic offloading. To minimize the incentive cost given an offloading target, users with high delay tolerance and large offloading potential should be prioritized for traffic offloading. To effectively capture the dynamic characteristics of users' delay tolerance, our incentive framework is based on reverse auction to let users proactively express their delay tolerance by submitting bids. We further take DTN as a case study to illustrate how to predict the offloading potential of the users by using stochastic analysis. Extensive tracedriven simulations verify the efficiency of our incentive framework for 3G traffic offloading.
Abstract-The recent popularization of hand-held mobile devices, such as smartphones, enables the inter-connectivity among mobile users without the support of Internet infrastructure. When mobile users move and contact each other opportunistically, they form a Delay Tolerant Network (DTN), which can be exploited to share data among them. Data replication is one of the common techniques for such data sharing. However, the unstable network topology and limited contact duration in DTNs make it difficult to directly apply traditional data replication schemes. Although there are a few existing studies on data replication in DTNs, they generally ignore the contact duration limits. In this paper, we recognize the deficiency of existing data replication schemes which treat the complete data item as the replication unit, and propose to replicate data at the packet level. We analytically formulate the contact duration aware data replication problem and give a centralized solution to better utilize the limited storage buffers and the contact opportunities. We further propose a practical contact Duration Aware Replication Algorithm (DARA) which operates in a fully distributed manner and reduces the computational complexity. Extensive simulations on both synthetic and realistic traces show that our distributed scheme achieves close-to-optimal performance, and outperforms other existing replication schemes.
Data access is an important issue in Delay Tolerant Networks (DTNs), and a common technique to improve the performance of data access is cooperative caching. However, due to the unpredictable node mobility in DTNs, traditional caching schemes cannot be directly applied. In this paper, we propose DAC, a novel caching protocol adaptive to the challenging environment of DTNs. Specifically, we exploit the social community structure to combat the unstable network topology in DTNs. We propose a new centrality metric to evaluate the caching capability of each node within a community, and solutions based on this metric are proposed to determine where to cache. More importantly, we consider the impact of the contact duration limitation on cooperative caching, which has been ignored by the existing works. We prove that the marginal caching benefit that a node can provide diminishes when more data is cached. We derive an adaptive caching bound for each mobile node according to its specific contact patterns with others, to limit the amount of data it caches. In this way, both the storage space and the contact opportunities are better utilized. To mitigate the coupon collector's problem, network coding techniques are used to further improve the caching efficiency. Extensive trace-driven simulations show that our cooperative caching protocol can significantly improve the performance of data access in DTNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.