Microbially induced calcium carbonate (CaCO3) precipitation (MICP) is an emerging soil-treatment method. To explore the effect of this technology on granite residual soil, this study investigated the effects of the mechanical properties and disintegration resistance of microbially cured granite residual soil under different moisture contents by conducting direct shear and disintegration tests. The curing mechanism was also discussed and analyzed. Results showed that MICP can be used as reinforcement for granite residual soil. Compared with those of untreated granite residual soil, the internal friction angle of MICP-treated granite residual soil increased by 10% under a moisture content of 30%, while its cohesion increased by 218%. The disintegration rate of the MICP-treated granite residual soil stabilized after a maintenance time of 5 days under different water contents. Therefore, we provide the explanation that the improvement of the shear strength and disintegration resistance of granite residual soil is due to CaCO3 precipitation and the surface coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.