Cucurbitaceae plants are of considerable biological and economic importance, and genomes of cucumber, watermelon, and melon have been sequenced. However, a comparative genomics exploration of their genome structures and evolution has not been available. Here, we aimed at performing a hierarchical inference of genomic homology resulted from recursive paleopolyploidizations. Unexpectedly, we found that, shortly after a core-eudicot-common hexaploidy, a cucurbit-common tetraploidization (CCT) occurred, overlooked by previous reports. Moreover, we characterized gene loss (and retention) after these respective events, which were significantly unbalanced between inferred subgenomes, and between plants after their split. The inference of a dominant subgenome and a sensitive one suggested an allotetraploid nature of the CCT. Besides, we found divergent evolutionary rates among cucurbits, and after doing rate correction, we dated the CCT to be 90–102 Ma, likely common to all Cucurbitaceae plants, showing its important role in the establishment of the plant family.
Recent studies have demonstrated upregulation of transient receptor potential cation channel 6 (TRPC6) contributes to podocyte injury in acquired forms of proteinuric kidney diseases, such as focal segmental glomerulosclerosis (FSGS). However, under these pathophysiological conditions, the mechanisms of regulation of TRPC6 expression and activity remain unknown. The present study tested the hypothesis that NADPH oxidase-mediated redox signaling importantly participates in the development of podocyte injury by regulation of TRPC6 expression and activity. Injection of puromycin aminonucleoside (PAN) to rats produced severe proteinuria and mimics the lesions of FSGS. Podocyte effacement, NADPH oxidase subunit NOX4 expression, enzyme activity and TRPC6 expression were significant increased in glomeruli from PAN nephrosis rats. Inhibition of NADPH oxidase activity by apocynin ameliorated proteinuria and podocyte effacement and reduced TRPC6 expression. In in vitro study, PAN significantly increased NOX4 and TRPC6 expression levels in cultured podocytes. This increased TRPC6 expression was attenuated by apocynin or siRNA-NOX4. Our results provide direct evidence for the first time that NADPH oxidase-derived reactive oxygen species (ROS) is one of critical components of a signal transduction pathway that links PAN nephrosis to TRPC6-mediated Ca2+ signaling.
Bamboo is one of the fastest-growing non-timber forest plants. Moso bamboo (Phyllostachys edulis) is the most economically valuable bamboo in Asia, especially in China. With the release of the whole-genome sequence of moso bamboo, there are increasing demands for refined annotation of bamboo genes. Recently, large amounts of bamboo transcriptome data have become available, including data on the multiple growth stages of tissues. It is now feasible for us to construct co-expression networks to improve bamboo gene annotation and reveal the relationships between gene expression and growth traits. We integrated the genome sequence of moso bamboo and 78 transcriptome data sets to build genome-wide global and conditional co-expression networks. We overlaid the gene expression results onto the network with multiple dimensions (different development stages). Through combining the co-expression network, module classification and function enrichment tools, we identified 1,896 functional modules related to bamboo development, which covered functions such as photosynthesis, hormone biosynthesis, signal transduction, and secondary cell wall biosynthesis. Furthermore, an online database (http://bioinformatics.cau.edu.cn/bamboo) was built for searching the moso bamboo co-expression network and module enrichment analysis. Our database also includes cis-element analysis, gene set enrichment analysis, and other tools. In summary, we integrated public and in-house bamboo transcriptome data sets and carried out co-expression network analysis and functional module identification. Through data mining, we have yielded some novel insights into the regulation of growth and development. Our established online database might be convenient for the bamboo research community to identify functional genes or modules with important traits.
BackgroundTransmissible gastroenteritis virus (TGEV) infection can activate NF-κB pathway in porcine intestinal epithelial cells and result in severe inflammation. Non-coding RNAs (ncRNAs) are not translated into proteins and play an important role in many biological and pathological processes such as inflammation, viral infection, and mitochondrial damage. However, whether ncRNAs participate in TGEV-induced inflammation in porcine intestinal epithelial cells is largely unknown.ResultsIn this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of mRNAs, miRNAs, and circRNAs in Mock- and TGEV-infected intestinal porcine epithelial cell-jejunum 2 (IPEC-J2) cell line. A total of 523 mRNAs, 65 microRNAs (miRNAs), and 123 circular RNAs (circRNAs) were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed differentially expressed mRNAs were linked to inflammation-related pathways, including NF-κB, Toll-like receptor, NOD-like receptor, Jak-STAT, TNF, and RIG-I-like receptor pathways. The interactions among mRNA, miRNA, and circRNA were analyzed. The data showed that ssc_circ_009380 and miR-22 might have interaction relationship. Dual-luciferase reporter assay confirmed that miR-22 directly bound to ssc_circ_009380. We also observed that overexpression of miR-22 led to a reduction of p-IκB-α and accumulation of p65 in nucleus in TGEV-infected IPEC-J2 cells. In contrast, inhibition of miR-22 had the opposite effects. Moreover, silencing of ssc_circ_009380 inhibited accumulation of p65 in nucleus and phosphorylation of IκB-α.ConclusionsThe data revealed that differentially expressed mRNAs and ncRNAs were primarily enriched in inflammation-related pathways and ssc_circ_009380 promoted activation of NF-κB pathway by binding miR-22 during TGEV-induced inflammation.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-5128-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.