The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.
The satellite-to-ground communication system is a significant part of future space communication networks. The free-space optical (FSO) communication technique is a prospective solution for satellite-to-ground communication. However, atmospheric optical turbulence is a major impairment in FSO communication systems. In this paper, to improve the performance and flexibility of a satellite-to-ground laser communication system, we put forward a novel modulation format identification (MFI) technique for an FSO communication system based on a convolution neural network (CNN). The results indicate that our CNN model can blindly and accurately identify the modulation format with classification accuracy up to 99.98% for random channel condition, including the strength of turbulence and signal-to-noise ratio (SNR) of additive Gaussian white noise (AWGN) ranging from 10dB to 30dB. Moreover, the CNN demonstrated robustness against atmospheric optical turbulence and suggested immunity to additive noise. Therefore, the proposed methodology proved to be a viable solution in the application of an FSO communication simulation channel, which can easily deal with the scene of fast modulation format switching and accurate identification to satisfy system requirements. Therefore, we hope this scheme can find a practical implementation in satellite-to-ground optical wireless systems.
Probabilistic shaping (PS) is a promising technique to approach the Shannon limit. In this paper, we design a practical coded modulation scheme based on PS to improve the capacity of coherent free-space optical (FSO) links with quadrature amplitude modulation (QAM), where the fading channel follows the Gamma-Gamma distribution. The aim of this paper is to optimize the probability mass function (PMF) of the QAM signal points to achieve the maximum channel capacity. Due to the complexity of the objective function, the heuristic algorithm was employed to solve the optimization problem. To the best of the authors’ knowledge, the closed-form pairwise error probability (PEP) is first derived with the non-uniform signals under the turbulence channel. In addition, we measure the average symbol error rate (SER) and post-FEC bit error rate (BER) by the Monte Carlo simulation method. The numerical simulation results of both capacity and BER show that the proposed PS scheme is better than the uniform distribution. The post-FEC BER results show that the proposed PS scheme provides significant gains compared with the uniform scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.