Multiple Acyl-CoA dehydrogenation deficiency (MADD) is an autosomal recessive disorder of fatty acid oxidation and amino-acid metabolism. Most patients with late-onset MADD are well responsive to treatment with riboflavin, which is also termed as riboflavin-responsive MADD (RR-MADD). In this study, we summarized the clinical profiles and genetic features of 13 Chinese patients with RR-MADD and reanalyzed the existing data on RR-MADD patients in Mainland China. In a cohort comprising 13 patients, all were seen to present with severe muscular symptoms occasionally accompanied with mild involvements of extramuscular organs. A total of 18 mutations (13 reported and 5 novel) of the ETFDH gene were identified in this series of patients. Exon deletion/duplication was not found in all patients. ETF:QO expression from the muscle specimens was significantly decreased in all patients. At the time of this study the total number of RR-MADD cases had reached 148 in Mainland China since 2009. The muscle symptoms in Mainland China were similar to those in other regions. However, the common extramuscular symptoms were fatty liver and recurrent vomiting in mainland Chinese patients rather than encephalopathy found in Caucasian patients. A total of 68 mutations had been identified in 148 patients with RR-MADD. The c.250G>A had a high mutation frequency in Southern China, whereas c.770A>G and c.1227A>C were more geographically widespread hot spot mutations in Mainland China.
Objective: To investigate acute sleep deprivation (SD)-related regional brain activity changes and their relationships with behavioral performances.Methods: Twenty-two female subjects underwent an MRI scan and an attention network test at rested wakefulness (RW) status and after 24 h SD. The amplitude of low-frequency fluctuations (ALFF) was used to investigate SD-related regional brain activity changes. We used the receiver operating characteristic (ROC) curve to evaluate the ability of the ALFF differences in regional brain areas to distinguish the SD status from the RW status. We used Pearson correlations to evaluate the relationships between the ALFF differences in brain areas and the behavioral performances during the SD status.Results: Subjects at the SD status exhibited a lower accuracy rate and a longer reaction time relative to the RW status. Compared with RW, SD showed significant lower ALFF values in the right cerebellum anterior lobe, and higher ALFF areas in the bilateral inferior occipital gyrus, left thalamus, left insula, and bilateral postcentral gyrus. The area under the curve values of the specific ALFF differences in brain areas were (mean ± std, 0.851 ± 0.045; 0.805–0.93). Further, the ROC curve analysis demonstrated that the ALFF differences in those regional brain areas alone discriminated the SD status from the RW status with high degrees of sensitivities (82.16 ± 7.61%; 75–93.8%) and specificities (81.23 ± 11.39%; 62.5–93.7%). The accuracy rate showed negative correlations with the left inferior occipital gyrus, left thalamus, and left postcentral gyrus, and showed a positive correlation with the right cerebellum.Conclusions: The ALFF analysis is a potential indicator for detecting the excitation–inhibition imbalance of regional cortical activations disturbed by acute SD with high performances.
BackgroundNeutral lipid storage disease with myopathy (NLSDM) is a rare clinical heterogeneous disorder caused by mutations in the patatin-like phospholipase domain-containing 2 (PNPLA2) gene. NLSDM usually presents skeletal myopathy, cardiomyopathy and the multiple organs dysfunction. Around 50 cases of NLSDM have been described worldwide, whereas the comprehensive understanding of this disease are still limited. We therefore recruit NLSDM patients from 10 centers across China, summarize the clinical, muscle imaging, pathological and genetic features, and analyze the genotype-phenotype relationship.ResultsA total of 45 NLSDM patients (18 men and 27 women) were recruited from 40 unrelated families. Thirteen patients were born from consanguineous parents. The phenotypes were classified as asymptomatic hyperCKemia (2/45), pure skeletal myopathy (18/45), pure cardiomyopathy (4/45), and the combination of skeletal myopathy and cardiomyopathy (21/45). Right upper limb weakness was the early and prominent feature in 61.5% of patients. On muscle MRI, the long head of the biceps femoris, semimembranosus and adductor magnus on thighs, the soleus and medial head of the gastrocnemius on lower legs showed the most severe fatty infiltration. Thirty-three families were carrying homozygous mutations, while seven families were carrying compound heterozygous mutations. A total of 23 mutations were identified including 11 (47.8%) point mutations, eight (34.8%) deletions and four (17.4%) insertions. c.757 + 1G > T, c.245G > A and c.187 + 1G > A were the three most frequent mutations. Among four groups of phenotypes, significant differences were shown in disease onset (< 20 years versus ≥20 years old, p = 0.003) and muscle pathology (with rimmed vacuoles versus without rimmed vacuoles, p = 0.001). PNPLA2 mutational type or functional defects did not show great impact on phenotypes.ConclusionWe outline the clinical and genetic spectrum in a large cohort of NLSDM patients. Selective muscle fatty infiltration on posterior compartment of legs are characteristic of NLSDM. Chinese patients present with distinctive and relative hotspot PNPLA2 mutations. The disease onset age and pathological appearance of rimmed vacuoles are proved to be related with the clinical manifestations. The phenotypes are not strongly influenced by genetic defects, suggesting the multiple environmental risk factors in the development of NLSDM.
A biodegradable Copolymer of poly(lactic acid-co-lysine)(PLA-PLL) was synthesized by a modified method and novel Arginine-Glycine-Aspartic (RGD) peptides were chemical conjugated to the primary epsilon-amine groups of lysine components in four steps: I to prepare the monomer of 3-(Nepsilon-benzoxycarbonyl-L-lysine)-6-L-methyl-2,5-morpholinedione; II to prepare diblock copolymer poly(lactic acid-co-(Z)-L-lysine) (PLA-PLL(Z)) by ring-opening polymerization of monomer and L,L-lactide with stannous octoate as initiator; III to prepare diblock copolymer PLA-PLL by deprotected the copolymer PLA-PLL(Z) in HBr/HoAc solution; IV the reaction between RGD and the primary epsilon-amine groups of the PLA-PLL. The structure of PLA-PLL-RGD and its precursors were conformed by FTIR-Raman and 1H NMR. Low weight average molecular weight (9,200 g/mol) of the PLA-PLL was obtained and its PDI is 1.33 determined by GPC. The PLA-PLL contained 2.1 mol% lysine groups as determined by 1H NMR using the lysine protecting group's phenyl protons. Therefore, the novel RGD-grafted diblock copolymer is expected to find application in drug carriers for tumor therapy or non-viral DNA carriers for gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.