The high mobility group AT-hook 2 (HMGA2) protein has been found to be upregulated in the majority of tumor types and is associated with a poor prognosis. Previous studies have suggested the oncogenic role of HMGA2 in gallbladder cancer (GBC). The present study aimed to investigate the effects of HMGA2 on the invasion, migration and angiogenesis of GBC cells.
Departmental sources
Background:Worldwide, hepatocellular carcinoma (HCC) is one of the most commonly diagnosed malignant diseases and is the third leading cause of cancer-related death. This study aimed to investigate the effect of hydroxypyridinone-coumarin (HPC) on MHCC97 and HepG2 human HCC cells and the mechanisms involved. Material/Methods: MHCC97 and HepG2 human HCC cells were cultured in vitro. An MTT cytotoxicity assay was used to assess cell viability and proliferation, with and without treatment with HPC. Cell autophagosomes were labeled with GFP-LC3 using confocal fluorescence microscopy. Western blot was used to measure protein expression.
Results:HPC significantly reduced the cell proliferation rate in a concentration-dependent manner, with 2 µM of HPC resulting in a reduced proliferation rate of MHCC97 cells (by 36%) and HepG2 cells (by 29%) (P<0.02). HPC significantly reduced autophagy in MHCC97 and HepG2 cells. Western blot showed that treatment with HPC significant upregulated Atg5, beclin-1, LC3-phosphatidylethanolamine conjugate (LC3-II), and Atg-3, reduced p62 and Akt protein expression, and induced phosphorylation of ERK1/2. GFP-LC3B labeling in MHCC97 and HepG2 cells was increased following HPC treatment.
Conclusions:HPC induced autophagy and inhibited the proliferation of MHCC97 and HepG2 HCC cells in vitro and involved activation of ERK1/2 and down-regulation of the Akt pathway.
This study explored the effect of methyl-indole on pancreatic cancer cell viability and investigated the mechanism involved. The viability of pancreatic cells showed a significant suppression on treatment with methyl-indole in dose-based manner. Treatment with 5 µM methyl-indole suppressed Capan-1 cell viability to 23%. The viability of Aspc-1 cells was reduced to 20% and those of MIApaCa-2 cells to 18% by 5 µM methyl-indole. The apoptotic proportion of Capan-1 cells was 67%, while as those of Aspc-1 and MIApaCa-2 cells increased to 72 and 77%, respectively, on treatment with 5 µM methyl-indole. The level of P13K, p-Tyr, p-Crkl and p-Akt was inhibited in the cells by methyl-indole. Moreover, methyl-indole also suppressed zinc-finger protein, X-linked mRNA and protein expression in tested cells. In summary, methyl-indole exhibits anti-proliferative effect on pancreatic cancer cells and induces apoptosis. It targeted ZFX expression and down-regulated P13K/AKT pathway in pancreatic cancer cells. Therefore, methyl-indole acts as therapeutic agent for pancreatic cancer and may be studied further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.