Lithium-ion batteries (LIBs) are used widely in today's consumer electronics and offer great potential for hybrid electric vehicles (HEVs), plug-in HEVs, pure EVs, and also in smart grids as future energy-storage devices. However, many challenges must be addressed before these future applications of LIBs are realized, such as the energy and power density of LIBs, their cycle and calendar life, safety characteristics, and costs. Recently, a technique called atomic layer deposition (ALD) attracted great interest as a novel tool and approach for resolving these issues. In this article, recent advances in using ALD for LIB studies are thoroughly reviewed, covering two technical routes: 1) ALD for designing and synthesizing new LIB components, i.e., anodes, cathodes, and solid electrolytes, and; 2) ALD used in modifying electrode properties via surface coating. This review will hopefully stimulate more extensive and insightful studies on using ALD for developing high-performance LIBs.
Rope-like bundles of single-walled carbon nanotubes (SWNTs) similar to those obtained by laser vaporization and electric-arc techniques were synthesized on a relatively large scale and at low cost by the catalytic decomposition of hydrocarbons at a temperature of about 1200 °C using an improved floating catalyst method. The SWNTs thus obtained have larger diameters and are self-organized into ropes. The addition of thiophene was found to be effective in promoting the growth of SWNTs and in increasing the yield of either SWNTs or multiwalled carbon nanotubes under different growth conditions.
Ultrathin MoS2/N‐graphene nanosheets with ≈4 nm thickness exhibit exceptional electrochemical performance. Extension of the defect sites and vacancies of the nanosheets results in the increase of capacity during cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.