Noble metal foams (NMFs) are a new class of functional materials featuring properties of both noble metals and monolithic porous materials, providing impressive prospects in diverse fields. Among reported synthetic methods, the sol-gel approach manifests overwhelming advantages for versatile synthesis of nanostructured NMFs (i.e., noble metal aerogels) under mild conditions. However, limited gelation methods and elusive formation mechanisms retard structure/composition manipulation, hampering on-demand design for practical applications. Here, highly tunable NMFs are fabricated by activating specific ion effects, enabling various single/alloy aerogels with adjustable composition (Au, Ag, Pd, and Pt), ligament sizes (3.1 to 142.0 nm), and special morphologies. Their superior performance in programmable self-propulsion devices and electrocatalytic alcohol oxidation is also demonstrated. This study provides a conceptually new approach to fabricate and manipulate NMFs and an overall framework for understanding the gelation mechanism, paving the way for on-target design of NMFs and investigating structure-performance relationships for versatile applications.
Amongst various porous materials, noble metal aerogels attract wide attention due to their concurrently featured catalytic properties and large surface areas. However, insufficient understanding and investigation of key factors (e.g. reductants and ligands) in the fabrication process limits on-target design, impeding material diversity and available applications. Herein, unveiling multiple roles of reductants, we develop an efficient method, i.e. the excessive-reductant-directed gelation strategy. It enables to integrate ligand chemistry for creating gold aerogels with a record-high specific surface area (59.8 m 2 g −1), and to expand the composition to all common noble metals. Moreover, we demonstrate impressive electrocatalytic performance of these aerogels for the ethanol oxidation and oxygen evolution reaction, and discover an unconventional organic-ligand-enhancing effect. The present work not only enriches the composition and structural diversity of noble metal aerogels, but also opens up new dimensions for devising efficient electrocatalysts for broad material systems.
All inorganic lead halide perovskite nanocrystals (PNCs) typically suffer from poor stability against moisture and UV radiation as well as degradation during thermal treatment. The stability of PNCs can be significantly enhanced through polymer encapsulation, often accompanied by a decrease of photoluminescence quantum yield (PLQY) due to the loss of highly dynamic oleylamine/oleic acid (OLA/OA) ligands. Herein, we propose a solution for this problem by utilizing partially hydrolyzed poly(methyl methacrylate) (h-PMMA) and highly branched poly(ethylenimine) (b-PEI) as double ligands stabilizing the PNCs already during the mechanochemical synthesis (grinding). The hydrophobic polymer of h-PMMA imparts excellent film-forming properties and water stability to the resulting NC−polymer composite. In its own turn, the b-PEI forms an amino-rich, strongly binding ligand layer on the surface of the PNCs being responsible for the significant improvement of the PLQY and the stability of the resulting material. Moreover, the introduction of b-PEI promotes a partial phase conversion from CsPbBr 3 to CsPb 2 Br 5 to obtain CsPbBr 3 /CsPb 2 Br 5 nanocrystals with a core− shell-like structure. As-prepared PNCs solutions are directly processable as inks, while their PLQY drops only slightly from 75% in colloidal solution to 65% in films. Moreover, the final PNC−polymer film exhibits excellent stability against water, heat, and ultraviolet light irradiation. These superior properties allowed us to fabricate a proof of concept thin film OLED with h-PMMA/b-PEI-stabilized PNCs as an easily processable, narrowly emitting color conversion composite material. KEYWORDS: CsPbBr 3 −CsPb 2 Br 5 , partially hydrolyzed PMMA, highly branched PEI, high photoluminescence quantum yield, stability B ecause of their excellent photophysical properties, such as adjustable band gaps, high molar extinction coefficients, and excellent charge−transfer performance, all-inorganic cesium lead halide perovskite nanomaterials CsPbX 3 (X = Cl, Br, or I) have been perfect candidates for many optoelectronic applications, such as solar cells, 1 LEDs, 2,3 lasers, 4 photodetectors, 5 field effect transistors (FETs), 6 and Xray scintillators. 7 However, moisture, heat, and oxygen make perovskite nanomaterials suffering from poor stability. 8,9 For example, they dissolve in polar solvents, such as water, due to the ionic nature of the material itself. Additionally, perovskite nanomaterials easily undergo phase transitions and decompose
Noble metals, despite their expensiveness, display irreplaceable roles in widespread fields. To acquire novel physicochemical properties and boost the performance‐to‐price ratio for practical applications, one core direction is to engineer noble metals into nanostructured porous networks. Noble metal foams (NMFs), featuring self‐supported, 3D interconnected networks structured from noble‐metal‐based building blocks, have drawn tremendous attention in the last two decades. Inheriting structural traits of foams and physicochemical properties of noble metals, NMFs showcase a variety of interesting properties and impressive prospect in diverse fields, including electrocatalysis, heterogeneous catalysis, surface‐enhanced Raman scattering, sensing and actuation, etc. A number of NMFs have been created and versatile synthetic approaches have been developed. However, because of the innate limitation of specific methods and the insufficient understanding of formation mechanisms, flexible manipulation of compositions, structures, and corresponding properties of NMFs are still challenging. Thus, the correlations between composition/structure and properties are seldom established, retarding material design/optimization for specific applications. This review is devoted to a comprehensive introduction of NMFs ranging from synthesis to applications, with an emphasis on electrocatalysis. Challenges and opportunities are also included to guide possible research directions in this field and promote the interest of interdisciplinary scientists.
Noble metal aerogels (NMAs), as the most important class of noble metal foams (NMFs), appear as emerging functional porous materials in the field of materials science. Combining the irreplaceable roles of noble metals in certain scenarios, as well as monolithic and porous features of aerogels, NMAs can potentially revolutionize diverse fields, such as catalysis, plasmonics, and biology. Despite profound progress, grand challenges remain in their fabrication process, including the efficient structure control, the comprehensive understanding of the formation mechanisms, and the generality of the fabrication strategies, thus inevitably retarding the material design and optimization. This Perspective focuses on the key progress, especially of the fabrication strategies for NMAs during the last two decades, while other NMFs are also succinctly introduced. Challenges and opportunities are summarized to highlight the unexploited space and future directions in expectation of stimulating the broad interest of interdisciplinary scientists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.