We report transmission electron microscope observations that provide evidence of deformation twinning in plastically deformed nanocrystalline aluminum. The presence of these twins is directly related to the nanocrystalline structure, because they are not observed in coarse-grained pure aluminum. We propose a dislocation-based model to explain the preference for deformation twins and stacking faults in nanocrystalline materials. These results underscore a transition from deformation mechanisms controlled by normal slip to those controlled by partial dislocation activity when grain size decreases to tens of nanometers, and they have implications for interpreting the unusual mechanical behavior of nanocrystalline materials.
The crystal and magnetic structures of single-crystalline hexagonal LuFeO(3) films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO(3) films are room-temperature multiferroics.
Thin Pt films on an yttrium iron garnet (YIG = Y(3)Fe(5)O(12)) show ferromagneticlike transport properties, which may impact the functionality of Pt in spin current detection, but do not provide direct quantitative information on the Pt magnetization. We report magnetic x-ray magnetic circular dichroism measurements of YIG/Pt(1.5 nm) showing an average Pt moment of 0.054 μ(B) at 300 K and 0.076 μ(B) at 20 K. This observation indicates strong proximity effects and induced magnetic ordering in Pt on magnetic insulators and their contribution to the spin-related measurements should not be neglected. The transport characteristics also suggest considerable modifications in the Pt electronic structure due to magnetic ordering.
Epitaxial ZnO thin films doped with 7% Mn have been made by reactive rf magnetron sputtering onto (112 គ 0) sapphire substrates at 400°C. X-ray diffraction measurements reveal that the Zn 0.93 Mn 0.07 O film has a ͑0001͒ wurtzite single-crystal structure with a rocking curve width of 0.98°. UV-VIS absorption spectra show a band gap of 3.25 eV for pure ZnO films and 3.31 eV for the Zn 0.93 Mn 0.07 O film with states extending into the gap. The Auger electron spectroscopy shows homogeneous distribution of Mn in the film. The magnetic properties of the Zn 0.93 Mn 0.07 O film have been measured by a superconducting quantum interference device magnetometer at various temperatures with fields up to 5 T. No ferromagnetic ordering has been observed at temperature at 5 K. Instead, paramagnetic characteristics with a Curie-Weiss behavior have been observed.
We investigate structural coupling of the MnO6 octahedra across a film/substrate interface and the resultant changes of the physical properties of ultrathin La2/3Sr1/3MnO3 (LSMO) films. In order to isolate the effect of interfacial MnO6 octahedral behavior from that of epitaxial strain, LSMO films are grown on substrates with different symmetry and similar lattice parameters. Ultrathin LSMO films show an increased magnetization and electrical conductivity on cubic (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) compared to those grown on orthorhombic NdGaO3 (NGO) substrates, an effect that subsides as the thickness of the films is increased. This study demonstrates that interfacial structural coupling can play a critical role in the functional properties of oxide heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.