This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Inflammation plays a crucial role in triggering regeneration, while inadequate or chronic inflammation hinders the regenerative process, resulting in refractory wounds. Inspired by the ideal regeneration mode in lower vertebrates and the human oral mucosa, realigning dysregulated inflammation to a heightened and acute response provides a promising option for refractory wound therapy. Neutrophils play important roles in inflammation initiation and resolution. Here, a hybrid biomaterial is used to stimulate transiently heightened inflammatory responses by precise tempospatial regulation of neutrophil recruitment and apoptosis. The hybrid biomaterial (Gel@fMLP/SiO 2 -FasL) is constructed by loading of formyl-met-leu-phe (fMLP) and FasL-conjugated silica nanoparticles (SiO 2 -FasL) into a pH-responsive hydrogel matrix. This composition enables burst release of fMLP to rapidly recruit neutrophils for heightened inflammation initiation. After neutrophils act to produce acids, the pH-responsive hydrogel degrades to expose SiO 2 -FasL, which induces activated neutrophils apoptosis via FasL-Fas signaling triggering timely inflammation resolution. Apoptotic neutrophils are subsequently cleared by macrophages, and this efferocytosis activates key signalings to promote macrophage anti-inflammatory phenotypic transformation to drive regeneration. Ultimately, Gel@fMLP/SiO 2 -FasL successfully promotes tissue regeneration by manipulating inflammation in critical-sized calvarial bone defects and diabetic cutaneous wound models. This work provides a new strategy for refractory wound therapy via inducing transiently heightened inflammatory responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.