Despite the fact that most cancer cells display high glycolytic activity, cancer cells selectively express the less active M2 isoform of pyruvate kinase (PKM2). Here we demonstrate that PKM2 expression makes a critical regulatory contribution to the serine synthetic pathway. In the absence of serine, an allosteric activator of PKM2, glycolytic efflux to lactate is significantly reduced in PKM2-expressing cells. This inhibition of PKM2 results in the accumulation of glycolytic intermediates that feed into serine synthesis. As a consequence, PKM2-expressing cells can maintain mammalian target of rapamycin complex 1 activity and proliferate in serinedepleted medium, but PKM1-expressing cells cannot. Cellular detection of serine depletion depends on general control nonderepressible 2 kinase-activating transcription factor 4 (GCN2-ATF4) pathway activation and results in increased expression of enzymes required for serine synthesis from the accumulating glycolytic precursors. These findings suggest that tumor cells use serinedependent regulation of PKM2 and GCN2 to modulate the flux of glycolytic intermediates in support of cell proliferation.amino acid synthesis | glucose | metabolism | nucleotide biosynthesis
Summary Tumor cells increase the use of anabolic pathways to satisfy the metabolic requirements associated with a high growth rate. Transformed cells take up and metabolize nutrients such as glucose and glutamine at high levels that support anabolic growth. Oncogenic signaling through the PI3K/Akt and Myc pathways directly control glucose and glutamine uptake, respectively. In order to achieve elevated rates of nucleotide biosynthesis, neoplastic cells must divert carbon from PI3K/Akt-induced glycolytic flux into the non-oxidative branch of the pentose phosphate pathway to generate ribose 5-phosphate. This redirection of glucose catabolism appears to be regulated by cytoplasmic tyrosine kinases. Myc-induced glutamine metabolism also increases the abundance and activity of different rate-limiting enzymes that produce the molecular precursors required for de novo nucleotide synthesis. In this review, we will focus on recent progress in understanding of how glucose and glutamine metabolism is redirected by oncogenes in order to support de novo nucleotide biosynthesis during proliferation and how metabolic reprogramming can be potentially exploited in the development of new cancer therapies.
The pentose phosphate pathway (PPP) branches from glucose 6-phosphate (G6P), produces NADPH and ribose 5-phosphate (R5P), and shunts carbons back to the glycolytic or gluconeogenic pathway. The PPP has been demonstrated to be a major regulator for cellular reduction-oxidation (redox) homeostasis and biosynthesis. Enzymes in the PPP are reported to play important roles in many human diseases. In this review, we will discuss the role of the PPP in type 2 diabetes and cancer.
As chronic myeloid leukemia (CML) progresses from the chronic phase to blast crisis, the levels of BCR-ABL increase. In addition, blast transformed leukemic cells display enhanced resistance to imatinib in the absence of BCR-ABL resistance mutations. Here we show that when BCR-ABL transformed cell lines were selected for imatinib resistance in vitro, the cells that grew out displayed higher BCR-ABL expression comparable to increase seen in accelerated forms of the disease. This enhanced expression of BCR-ABL was associated with an increased rate of glycolysis but a decreased rate of proliferation. The higher level of BCR-ABL expression in the selected cells correlated with a non-hypoxic induction of HIF-1α that was required for cells to tolerate enhanced BCR-ABL signaling. HIF-1α induction resulted in an enhanced rate of glycolysis but reduced glucose flux through both the TCA cycle and the oxidative arm of the pentose phosphate pathway (PPP). The reduction in oxidative PPP mediated ribose synthesis was compensated by the HIF-1α-dependent activation of the non-oxidative PPP enzyme, transketolase, in imatinib-resistant CML cells. In both primary cultures of cells from patients exhibiting blast transformation and in vivo xenograft tumors, use of oxythiamine which can inhibit both the pyruvate dehydrogenase complex and transketolase resulted in enhanced imatinib sensitivity of tumor cells. Together, these results suggest that oxythiamine can enhance imatinib efficacy in patients that present in the accelerated form of the disease.
Tumor cells are metabolically reprogrammed to fuel cell proliferation. Most transformed cells take up high levels of glucose and produce ATP through aerobic glycolysis. In cells exhibiting aerobic glycolysis, a significant fraction of glucose carbon is also directed into de novo lipogenesis and nucleotide biosynthesis. The glucoseresponsive transcription factor carbohydrate responsive element binding protein (ChREBP) was previously shown to be important for redirecting glucose metabolism in support of lipogenesis in nonproliferating hepatocytes. However, whether it plays a more generalized role in reprogramming metabolism during cell proliferation has not been examined. Here, we demonstrated that the expression of ChREBP can be induced in response to mitogenic stimulation and that the induction of ChREBP is required for efficient cell proliferation. Suppression of ChREBP resulted in diminished aerobic glycolysis, de novo lipogenesis, and nucleotide biosynthesis, but stimulated mitochondrial respiration, suggesting a metabolic switch from aerobic glycolysis to oxidative phosphorylation. Cells in which ChREBP was suppressed by RNAi exhibited p53 activation and cell cycle arrest. In vivo, suppression of ChREBP led to a p53-dependent reduction in tumor growth. These results demonstrate that ChREBP plays a key role both in redirecting glucose metabolism to anabolic pathways and suppressing p53 activity.cancer biology ͉ cell biology ͉ metabolism
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.