Microstructure has significant effects on the mechanical properties of AlSi10Mg alloy. Therefore, an in-depth understanding of microstructure evolution, such as dendrite and Al-Si eutectic, is of great significance to obtain the desirable microstructure and manage the performance of AlSi10Mg components. In the current work, an integrated dendrite and eutectic evolution model based on the cellular automaton–finite difference (CA-FD) method, taking account of solute distribution, growth kinetics, and nucleation mechanism, was established. Microstructures of the as-built selective laser melted (SLMed) samples were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) techniques, and the experimental results showed that the microstructure consisted of Al grains and Al-Si eutectic networks in the individual melt pool. Dendrite growth, solute redistribution in ternary alloy and dendritic morphologies with different cooling rates were numerically investigated. In addition, the proposed model was also applied to predict the Al-Si eutectic evolution, and eutectic morphologies under eutectic undercooling in a range of 5 K to 20 K were also simulated. The simulated results indicated that dendrites were refined with the increasing of the cooling rates, and Al-Si eutectic morphology was sensitive to eutectic undercooling such that higher eutectic undercooling refined the eutectic microstructures. Model validations were performed, and the experimental results agreed well with the simulation results, indicating that the proposed model can successfully reproduce both dendrite and eutectic microstructures.
The microstructure and precipitate evolution of as-cast Mg–Nd alloys with different contents of Nd was investigated via experimental and simulation methods. The research showed that the as-cast microstructure of Mg–Nd alloy consisted of α-Mg dendrites and the intermetallic phases. A metastable β phase precipitated, followed by α-Mg dendrites that could be confirmed as Mg12Nd by X-ray diffraction (XRD) analysis. The amount of β-Mg12Nd presented a rising trend with increasing Nd additions. In addition, the tertiary phase was also observed in as-cast Mg–Nd alloy when Nd content was greater than 3 wt.%, which precipitated from the oversaturated α-Mg matrix. The tertiary phase should be β1-Mg3Nd, which is also a metastable phase with a face-centered cubic lattice. However, it is a pity that the tertiary phase was not detected by the XRD technique. Moreover, an effective cellular automaton (CA) model was explored and applied to simulate the time-dependent α-Mg/β1-Mg3Nd eutectic growth. The simulated results of α-Mg/β1-Mg3Nd eutectic growth in Mg-3Nd presented that the growth of α-Mg dendrites was accompanied by the nucleation and growth of β1-Mg3Nd precipitates and eventually formed a eutectic structure. The eutectic morphologies for Mg–Nd system alloys with different Nd contents were also simulated using the proposed model, and the results revealed that α-Mg dendrite was a refinement, and the amount of α-Mg/β1-Mg3Nd eutectic was promoted, with increasing Nd content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.