The response of riparian vegetation to flow regulation has been a research focus for decades. Several studies have shed light on the effects of flow stabilisation on riparian woody species, but other life forms exposed to intensified inundation have been overlooked. Furthermore, studies from a functional perspective are scarce.
We evaluated the functional response of riparian vegetation along the shores of the Three Gorges Reservoir on the Yangtze River in China to unnaturally long annual flooding (>7 months) after the first year of filling. We aimed to answer the following: (1) can we derive well‐defined flow‐response guilds from the riparian zones of the Yangtze River? and (2) which plant traits and guilds are favoured or disfavoured by the unnaturally long flooding environment?
Woody and herbaceous species were inventoried in 12 reaches along the shorelines of the Three Gorges Reservoir and another 12 reaches along the free‐flowing Yangtze River. We performed a cluster analysis to derive riparian guilds using abundance data (projective coverage) from 40 riparian plant species and 13 responsive traits. Structural composition and functional diversity of the unnaturally and naturally flooded riparian vegetation were compared.
Unnaturally long flooding substantially reduced species richness, but it did not change the riparian vegetation cover. This novel flooding reduced functional diversity, mostly owing to the loss of stress‐tolerant woody species and competitive perennial herbs. However, competitive annual herbs and flood‐tolerant riparian herbs, as the most abundant functional guilds, were favoured even under such long‐term hypoxic conditions.
These guilds under regulation revealed a high functional resilience to prolonged flooding along the upstream reaches of the Yangtze River. Flooding tolerance and the capacity to synchronise germination and growth with short‐exposure periods underlie the plant species changes. Our findings are useful for anticipating the effects of long‐lasting inundation on riparian areas triggered by flow regulation or warmer climates. The functional perspective lends confidence that our conclusions can be generalised to other geographical regions despite not sharing the same species pool. Finally, the plant species that showed a high flooding tolerance should be considered for the restoration of riparian areas affected by the Three Gorges Reservoir.
Succession of microbial and plant communities is crucial for the development and the stability of soil ecological functions. The relative role of plant communities and environmental disturbance in shaping the microbial community in a newly established habitat remains unclear. In this study, a mid-channel bar (MCB) exposed to an environmental disturbance gradient in the Yangtze River was studied to explore the effects of such disturbance and plant community traits on the succession of the soil microbial community. Bulk and rhizospheric soils were collected from the MCB and classified according to their level of exposure to environmental disturbance: head, central and tail. These subsequently underwent high-throughput sequencing and interdomain ecological network (IDEN) analysis to identify and characterize the predominant microbial groups present in the soils at each disturbance level. Furthermore, at each site, the presence and distribution of the plant community was also noted. The present study demonstrated that both bulk soil nutrients and plant community exhibited significant spatial distribution dependent on the level of disturbance and this influenced the composition of the microbial community. In less eroded parts of the MCB, i.e., the central, nutrients accumulated, promoting growths of plants. This in turn encouraged a more diverse microbial community, dominated by the bacterial genus Pseudarthrobacter. Plant showed a stronger association with bulk soil microbial communities compared to rhizosphere soil microbial communities. Particularly, Triarrhena sacchariflora and Hemarthria altissima, present in sites of low disturbance, exhibiting a more extensive plant-microbe association. They thus played a key role in shaping the soil microbial community. In general, however, plant species did not directly determine the composition of the bacterial community, but instead altered the nutritive state of the soil to promote microbial growth. Such findings are of significant value for conservation practices of newly formed ecosystems, which requires an integrated understanding of the role of environmental disturbance and plants on soil microbial community assemblage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.