Characterization and modeling of co-channel interference is critical for the design and performance evaluation of realistic multi-cell cellular networks. In this paper, based on alpha stable processes, an analytical co-channel interference model is proposed for multi-cell multiple-input multi-output (MIMO) cellular networks. The impact of different channel parameters on the new interference model is analyzed numerically. Furthermore, the exact normalized downlink average capacity is derived for a multi-cell MIMO cellular network with co-channel interference. Moreover, the closed-form normalized downlink average capacity is derived for cell-edge users in multi-cell multipleinput single-output (MISO) cooperative cellular networks with co-channel interference. From the new co-channel interference model and capacity formulas, the impact of cooperative antennas and base stations on cell-edge user performance in the multicell multi-antenna cellular network is investigated by numerical methods. Numerical results show that cooperative transmission can improve the capacity performance of multi-cell multi-antenna cooperative cellular networks, especially in a scenario with a high density of interfering base stations. The capacity performance gain is degraded with the increased number of cooperative antennas or base stations.
In this paper, we present an interference model for cognitive radio (CR) networks employing power control, contention control or hybrid power/contention control schemes. For the first case, a power control scheme is proposed to govern the transmission power of a CR node. For the second one, a contention control scheme at the media access control (MAC) layer, based on carrier sense multiple access with collision avoidance (CSMA/CA), is proposed to coordinate the operation of CR nodes with transmission requests. The probability density functions of the interference received at a primary receiver from a CR network are first derived numerically for these two cases. For the hybrid case, where power and contention controls are jointly adopted by a CR node to govern its transmission, the interference is analyzed and compared with that of the first two schemes by simulations. Then, the interference distributions under the first two control schemes are fitted by log-normal distributions with greatly reduced complexity. Moreover, the effect of a hidden primary receiver on the interference experienced at the receiver is investigated. It is demonstrated that both power and contention controls are effective approaches to alleviate the interference caused by CR networks. Some in-depth analysis of the impact of key parameters on the interference of CR networks is given via numerical studies as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.