In the field of steganalysis, in recent years, the research focus has mostly been on optimizing the structures of neural networks, while the application of high-pass filters is still limited to the simple selection of filters and simple adjustment of the number of filters. In this paper, we propose a method to enhance the assistance and contribution of high-pass filters to the detection capability of a spatial domain steganalysis model, which mainly contains the preprocessing enhancement of high-pass filters and cross-layer enhancement of high-pass filters, and we construct a preprocessing enhancement model, the HPF-Enhanced Model, for spatial domain steganalysis, based on Yedroudj-Net. In the experimental part, we find the best preprocessing enhancement method through various validations, and we compare the HPF-Enhanced Model with the classical models. The results show that the proposed enhancement method can bring a significant improvement, and they also show that the preprocessing enhancement method can help to reduce the model size, and it thus can be used to construct a lightweight spatial domain steganalysis model with strong performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.