BackgroundMounting evidence demonstrates that long noncoding RNAs (lncRNAs) have critical roles during the initiation and progression of cancers. In this study, we report that the small nucleolar RNA host gene 1 (SNHG1) is involved in colorectal cancer progression.MethodsWe analyzed RNA sequencing data to explore abnormally expressed lncRNAs in colorectal cancer. The effects of SNHG1 on colorectal cancer were investigated through in vitro and in vivo assays (i.e., CCK-8 assay, colony formation assay, flow cytometry assay, EdU assay, xenograft model, immunohistochemistry, and western blot). The mechanism of SNHG1 action was explored through bioinformatics, RNA fluorescence in situ hybridization, luciferase reporter assay, RNA pull-down assay, chromatin immunoprecipitation assay and RNA immunoprecipitation assay.ResultsOur analysis revealed that SNHG1 was upregulated in human colorectal cancer tissues, and high SNHG1 expression was associated with reduced patient survival. We also found that high SNHG1 expression was partly induced by SP1. Moreover, SNHG1 knockdown significantly repressed colorectal cancer cells growth both in vitro and in vivo. Mechanistic investigations demonstrated that SNHG1 could directly interact with Polycomb Repressive Complex 2 (PRC2) and modulate the histone methylation of promoter of Kruppel like factor 2 (KLF2) and Cyclin dependent kinase inhibitor 2B (CDKN2B) in the nucleus. In the cytoplasm, SNHG1 acted as a sponge for miR-154-5p, reducing its ability to repress Cyclin D2 (CCND2) expression.ConclusionsTaken together, the results of our studies illuminate how SNHG1 formed a regulatory network to confer an oncogenic function in colorectal cancer and suggest that SNHG1 may serve as a potential target for colorectal cancer diagnosis and treatment.Electronic supplementary materialThe online version of this article (10.1186/s12943-018-0894-x) contains supplementary material, which is available to authorized users.
Background Colorectal cancer (CRC) is one of the leading causes of tumor-related death worldwide, and its main cause of death is distant metastasis. Methyltransferase-like 14(METTL14), a major RNA N6-adenosine methyltransferase, is involved in tumor progression via regulating RNA function. The goal of the study is to uncover the biological function and molecular mechanism of METTL14 in CRC. Methods Quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) assays were employed to detect METTL14 and SOX4 in CRC cell lines and tissues. The biological functions of METTL14 were demonstrated using in vitro and in vivo experiments. Chromatin immunoprecipitation (ChIP), Transcrptomic RNA sequencing (RNA-Seq), m6A-RNA immunoprecipitation sequencing (MeRIP-Seq), RNA immunoprecipitation and luciferase reporter assays were used to explore the mechanism of METTL14 action. Results METTL14 expression was significantly downregulated in CRC and decreased METTL14 was associated with poor overall survival (OS). Both the univariate and multivariate Cox regression analysis indicated that METTL14 was an independent prognostic factor in CRC. Moreover, lysine-specific histone demethylase 5C(KDM5C)-mediated demethylation of histone H3 lysine 4 tri-methylation(H3K4me3) in the promoter of METTL14 inhibited METTL14 transcription. Functionally, we verified that METTL14 inhibited CRC cells migration, invasion and metastasis through in vitro and in vivo assays, respectively. Furthermore, we identified SRY-related high-mobility-group box 4(SOX4) as a target of METTL14-mediated m6A modification. Knockdown of METTL14 markedly abolished SOX4 mRNA m6A modification and elevated SOX4 mRNA expression. We also revealed that METTL14-mediated SOX4 mRNA degradation relied on the YTHDF2-dependent pathway. Lastly, we demonstrated that METTL14 might inhibit CRC malignant process partly through SOX4-mediated EMT process and PI3K/Akt signals. Conclusions Decreased METTL14 facilitates tumor metastasis in CRC, suggesting that METTL14 might be a potential prognostic biomarker and effective therapeutic target for CRC. Graphical abstract
Background Emerging studies suggest that long non-coding RNAs (lncRNAs) play crucial roles in colorectal cancer (CRC). Here, we report a lncRNA, SATB2-AS1, which is specifically expressed in colorectal tissue and is significantly reduced in CRC. We systematically elucidated its functions and possible molecular mechanisms in CRC. Methods LncRNA expression in CRC was analyzed by RNA-sequencing and RNA microarrays. The expression level of SATB2-AS1 in tissues was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). The functional role of SATB2-AS1 in CRC was investigated by a series of in vivo and in vitro assays. RNA pull-down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), chromatin isolation by RNA purification (ChIRP), Bisulfite Sequencing PCR (BSP) and bioinformatics analysis were utilized to explore the potential mechanisms of SATB2-AS1. Results SATB2-AS1 is specifically expressed in colorectal tissues and downregulated in CRC. Survival analysis indicates that decreased SATB2-AS1 expression is associated with poor survival. Functional experiments and bioinformatics analysis revealed that SATB2-AS1 inhibits CRC cell metastasis and regulates TH1-type chemokines expression and immune cell density in CRC. Mechanistically, SATB2-AS1 directly binds to WDR5 and GADD45A, cis -activating SATB2 (Special AT-rich binding protein 2) transcription via mediating histone H3 lysine 4 tri-methylation (H3K4me3) deposition and DNA demethylation of the promoter region of SATB2. Conclusions This study reveals the functions of SATB2-AS1 in CRC tumorigenesis and progression, suggesting new biomarkers and therapeutic targets in CRC. Electronic supplementary material The online version of this article (10.1186/s12943-019-1063-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.