In this paper, a new numerical algorithm for solving the time fractional Fokker-Planck equation is proposed. The analysis of local truncation error and the stability of this method are investigated. Theoretical analysis and numerical experiments show that the proposed method has higher order of accuracy for solving the time fractional Fokker-Planck equation.
In this paper, the implicit midpoint method is presented for solving Riesz tempered fractional diffusion equation with a nonlinear source term, where the tempered fractional partial derivatives are evaluated by the modified second-order Lubich tempered difference operator. Stability and convergence analyses of the numerical method are given. The numerical experiments demonstrate that the proposed method is effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.