This study concentrates on a fixed-time distributed optimization problem for multi-agent systems (MASs) with input delay and external disturbances. First, by adopting the Artstein model reduction technique, the time-delay system is first transformed into a delay-free one, and external disturbances are then effectively eliminated by using an integral sliding mode control strategy. Second, a new centralized optimization mechanism is developed that allows all agents to reach the same state in a fixed time and then converge to the optimal value of the global objective function. Meanwhile, the optimization problem is extended to switching topologies. Moreover, as the gradient information of the global objective function is difficult to obtain in advance, we construct a decentralized optimization protocol that enables all agents to acquire the same state in a certain amount of time while also optimizing the global optimization problem. Finally, two numerical simulations are presented to validate the effectiveness and reliability of the developed control strategy.
This article studies the distributed optimization problem for multi-agent systems with communication delays and external disturbances in a directed network. Firstly, a distributed optimization algorithm is proposed based on the internal model principle in which the internal model term can effectively compensate for external environmental disturbances. Secondly, the relationship between the optimal solution and the equilibrium point of the system is discussed through the properties of the Laplacian matrix and graph theory. Some sufficient conditions are derived by using the Lyapunov–Razumikhin theory, which ensures all agents asymptotically reach the optimal value of the distributed optimization problem. Moreover, an aperiodic sampled-data control protocol is proposed, which can be well transformed into the proposed time-varying delay protocol and analyzed by using the Lyapunov–Razumikhin theory. Finally, an example is given to verify the effectiveness of the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.