This study aimed to research the effects of different dietary concentrate to forage (C:F) ratio on growth performance, rumen fermentation and bacteria diversity of barn feeding Tibetan sheep. The experiment contains fiver treatments (HS1, HS2 HS3, HS4 and HS5; n = 8, respectively) based on dietary C:F ratios 0:100, 15:85, 30:70, 45:55, and 60:40, respectively. The ruminal bacterial community structure was investigated through high-throughput sequencing of 16S rRNA genes in V4 hypervariable region. The results showed that increasing dietary concentrate feed level from 0% to 60% exerted a positive effect on DMI, BW gain, gain rate and feed conversation ratio (FCR) in Tibetan sheep. The increases dietary concentrate feed level elevatedNH3-N, propionate and valerate concentrations, whereas, reduced molar ratio of acetate to propionate (A/P ratio) (P < 0.05). For rumen bacterial diversity, increases in dietary concentrate content contributed to lower alpha diversity indexes including Shannon wiener, Chao1 and observed species, meanwhile, significantly increased the abundances of the phylum Bacteroidetes and the genus Prevotella_1 (P < 0.05). In conclusion, increases dietary concentrate content improved the growth performance and Tibetan sheep fed diets of 45% concentrate obtained a better performance; the inclusion of concentrate in feed changed rumen fermentation from acetate fermentation to propionate fermentation, and improved the energy utilization efficiency of Tibetan sheep; the increased in concentrate content significantly reduced rumen bacteria diversity and changed the abundance of some core bacteria.
The rumen microbiota of ruminants plays a vital role in fiber digestion, and environmental factors affect its community structure. The yak (Bos grunniens) is the main livestock species that inhabits the Qinghai-Tibet Plateau (QTP) at regions located at high-altitude of 3,000–5,000 m. This work investigated the rumen bacterial community of yak that grazed on the QTP during the whole year to evaluate the relationship between the rumen bacterial community and the nutrient composition of forage plant at three stages. In this study, the diversity of the rumen prokaryotic community composition was monitored in 10 full-grazing yak in an alpine meadow of the QTP. The nutrient composition of three forage growth stages was determined: re-green stage (REGY), grassy stage (GY), and withered stage (WGY). High-throughput sequencing of bacterial 16S rRNA gene was used. The results showed that the nutritive composition of the alpine meadow changed with the seasons: crude protein (CP) (13.22%) was high in forage during REGY (spring), while neutral detergent fiber (NDF) (59.00%) was high during WGY (winter). Microbial diversity and richness were highest during REGY and the average number of operational taxonomic units from 30 samples was 4,470. The microbial composition was dominated by members of Bacteroidetes (51.82%), followed by Firmicutes (34.08%), and the relative microbial abundance changed in the three forage growth stages. Unweighted UniFrac distance PcoA showed that the bacterial community structure differed between REGY, GY, and WGY. Furthermore, taxonomic groups did not present differences regarding gender in these three stages. The rumen microbiota was enriched with functional potentials that were related to ABC transporters, the two-component system, Aminoacyl-tRNA biosynthesis, and metabolism of Purine, Pyrimidine, Starch and sucrose metabolism. Significant differences were found in the composition, diversity, and function of yak ruminal microorganisms during different forage growth stages. This indicates that microbial changes in the rumen depend on changes in the forage nutritional composition. These findings provide evidence on the rumen microbial diversity of yaks in the QTP.
Tibetan wild asses (Equus Kiang) are the only wild species of perissodactyls on the Qinghai-Tibet Plateau and appears on the International Union for Conversation of Nature (IUCN) 2012 Red List of threatened species. Therefore, understanding the gut microbiota composition and function of wild asses can provide a theoretical for the situ conservation of wild animals in the future.In this study, we measured the dry matter digestion by the 4 molar hydrochloric acid (4N HCL) acid-insoluble ash method and analyzed the intestinal microbiota of wild asses and domestic donkeys by high-throughput sequencing of the 16s rDNA genes in V3–V4 regions. The results showed that the dry matter digestion in wild asses was significantly higher than in domestic donkeys (P < 0.05). No significant difference in alpha diversity was detected between these two groups. Beta diversity showed that the bacterial community structure of wild asses was acutely different from domestic donkeys. At the phylum level, the two dominant phyla Bacteroidetes and Firmicutes in wild asses were significantly higher than that in domestic donkeys. At the genus level, Ruminococcaceae_NK4A214, Phascolarctobacterium, Coprostanoligenes_group, Lachnospiraceae_XPB1014_group and Akkermansia in wild asses were significantly higher than in domestic donkeys. Moreover, statistical comparisons showed that 40 different metabolic pathways exhibited significant differences. Among them, 29 pathways had richer concentrations in wild asses than domestic donkeys, mainly included amino acid metabolism, carbohydrate metabolism, and energy metabolism. Of note, network analysis showed that wild asses harbored a relatively more complex bacterial network than domestic donkeys, possibly reflecting the specific niche adaption of gut bacterial communities through species interactions. The overall results indicated that wild asses have advantages over domestic donkeys in dry matter digestion, gut microbial community composition and function, and wild asses have their unique intestinal flora to adapt high altitudes on the Qinghai-Tibet plateau.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.