Corynebacterium strain SH09 separated from a silver mine was used for biosorption and bioreduction of diamine silver complex. The biosorption of the diamine silver complex was better than that of silver ions and the maximum of the former was about 350 (mg Ag) (g dried biomass) −1 . After dried cells of SH09 were resuspended in the aqueous solution of diamine silver complex in the dark at 60• C for more than 72 h, transmission electron microscopy (TEM) observations showed that a large quantity of black particles whose diameter ranged from 10 to 15 nm were formed on the cell wall. The particles were identified as being silver nanoparticles by X-ray diffraction (XRD) and UV-vis spectroscopy. Under the same conditions, no bioreduction of silver nitrate was found. According to IR spectra, some functional groups, such as the amide of the proteins, were involved in the processes of biosorption and bioreduction.
Lung adenocarcinomas with gene rearrangement in the receptor tyrosine kinase ROS1 have emerged as a rare molecular subtype. Although these lung adenocarcinomas respond to ROS1tyrosine kinase inhibitors, many patients ultimately acquire resistance. ROS1gene rearrangement is generally mutually exclusive with other driver genomic alterations, such as those in EGFR, KRAS, or ALK, thus multiple genomic alterations are extremely rare. Herein, we report a case of a 42‐year‐old man diagnosed with lung adenocarcinoma positive for a SDC4‐ROS1 fusion, who was treated with crizotinib followed by three cycles of chemotherapy. A biopsy acquired after disease progression revealed the original SDC4‐ROS1 fusion along with a KRAS point mutation (p.G12D).We reviewed the related literature to determine the frequency of gene mutations in non‐small cell lung cancer patients. A better understanding of the molecular biology of non‐small cell lung cancer with multiple driver genomic aberrations will assist in determining optimal treatment.
BackgroundThe death-domain-associated protein (DAXX) was originally identified as a protein that binds to the transmembrane death receptor FAS and enhances both FAS-induced and transforming growth factor-β-dependent apoptosis. In a previous study, we found that nude mice injected with DAXX-overexpressing cells (ES-2-DAXX) accumulated large concentrations of first-generation ascites cells (I ascites cells). The role of DAXX in the development of ascites is unknown. The aim of this study was to analyze the effect of DAXX on proliferation and migration of ascites cells in ovarian cancer in vitro and in vivo.MethodsNude mice were housed in cages with a 14:10 h light:dark cycle; water and food were provided ad libitum. ES-2-DAXX cells (1×106) were injected intraperitoneally into athymic nude mice (8-week-old female mice). After 4 weeks, I ascites cells were collected. The I ascites cells were injected intraperitoneally into athymic nude mice (8-week-old female mice). After 4 weeks, II ascites cells were collected and cultured. Ascites cell survival, migration, and colony formation were measured using colony formation and cell growth assays. Immunofluorescent staining revealed the co-localization of DAXX and promyelocytic leukemia protein (PML) in ascites cell nuclei. Western blotting and immunohistochemistry showed that extracellular signal-related kinase (p-ERK) 1/2 and CEBP-β were highly expressed in tumor tissues formed by II ascites cells. Through immunoprecipitation, we also found that DAXX can interact with CEBP-β.ResultsDAXX enhanced ascites cell survival, migration, and colony formation. DAXX and PML nuclear foci dramatically increased in a passage-dependent manner in ascites cells, DAXX promoted the tumor growth of ascites cells in vivo, increased ascites cell proliferation in vivo, and enhanced ascites cell survival and migration by activating the ERK signalling pathway and integrating with CEBP-β.ConclusionsDAXX can interact with CEBP-β. DAXX can induce ovarian cancer ascites formation by activating the ERK signal pathway and binding to CEBP-β.
Vascular endothelial cells can survive under hypoxic and inflammatory conditions by alterations of the cellular energy metabolism. In addition to high rates of glycolysis, glutaminolysis is another important way of providing the required energy to support cellular sprouting in such situations. However, the exact mechanism in which endothelial cells upregulate glutaminolysis remains unclear. Here we demonstrated that protein phosphatase 2A (PP2A)-mediated Raf-MEK-ERK signaling was involved in glutaminolysis in endothelial cells. Using models of human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor-β1 (TGF-β1), we observed a dramatic induction in cellular glutamate levels accompanied by Raf-MEK-ERK activation. By addition of U0126, the specific inhibitor of MEK1/2, the expression of kidney-type glutaminase (KGA, a critical glutaminase in glutaminolysis) was significantly decreased. Moreover, inhibition of PP2A by okadaic acid (OA), a specific inhibitor of PP2A phosphatase activity or by depletion of its catalytic subunit (PP2Ac), led to a significant inactivation of Raf-MEK-ERK signaling and reduced glutaminolysis in endothelial cells. Taken together, these results indicated that PP2A-dependent Raf-MEK-ERK activation was involved in glutaminolysis and inhibition of PP2A signals was sufficient to block Raf-MEK-ERK pathway and reduced glutamine metabolism in endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.