<p>Cybersecurity worries intensify as Big Data, the Internet of Things, and 5G technologies develop. Based on code reuse technologies, malware creators are producing new malware quickly, and new malware is continually endangering the effectiveness of existing detection methods. We propose a vision transformer-based approach for malware picture identification because, in contrast to CNN, Transformer’s self-attentive process is not constrained by local interactions and can simultaneously compute long-range mine relationships. We use ViT-B/16 weights pre-trained on the ImageNet21k dataset to improve model generalization capability and fine-tune them for the malware image classification task. This work demonstrates that (i) a pure attention mechanism applies to malware recognition, and (ii) the Transformer can be used instead of traditional CNN for malware image recognition. We train and assess our models using the MalImg dataset and the BIG2015 dataset in this paper. Our experimental evaluation found that the recognition accuracy of transfer learning-based ViT for MalImg samples and BIG2015 samples is 99.14% and 98.22%, respectively. This study shows that training ViT models using transfer learning can perform better than CNN in malware family classification.</p> <p> </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.