BackgroundHyperlactatemia upon admission is a documented risk factor for mortality in critically ill adult patients. However, the predictive significance of a single lactate measurement at admission for mortality in the general population of critically ill children remains uncertain. This study evaluated the predictive value of blood lactate levels at admission and determined the cut-off values for predicting in-hospital mortality in the critically ill pediatric population.MethodsWe enrolled 1109 critically ill children who were admitted to a pediatric intensive care unit between July 2008 and December 2010. Arterial blood samples were collected in the first 2 hours after admission, and the lactate levels were determined. The Pediatric Risk of Mortality III (PRISM III) scores were calculated during the first 24 hours after admission.ResultsOf the 1109 children admitted, 115 (10.4%) died in the hospital. The median (interquartile range) blood lactate level in critically ill children was 3.2 mmol/l (2.2-4.8). Among the children, 859 (77.5%) had a lactate concentration >2.0 mmol/l. The blood lactate level upon admission was significantly associated with mortality (odds ratio [OR] = 1.38; 95% confidence interval [CI], 1.30-1.46; p <0.001), even after adjustment for age, gender, and illness severity assessed by PRISM III (OR = 1.27; p <0.001). Multivariate regression analysis showed that a high blood lactate level (OR = 1.17; 95% CI, 1.07-1.29; p = 0.001), a high PRISM III score (OR = 1.15; 95% CI, 1.11-1.20; p <0.001), and a low serum albumin (OR =0.92; 95% CI, 0.88-0.96; p <0.001) were independent risk factors for mortality in critically ill children. Blood lactate achieved an area under-the-receiver-operating-characteristic curve (AUC) of 0.79 (p <0.001) for predicting mortality that was similar to that of PRISM III (AUC = 0.82; p <0.001). The p-value for a comparison of both AUCs was 0.318. Blood lactate displayed a sensitivity of 61% and a specificity of 86% in predicting mortality at the optimal cut-off value of 5.55 mmol/l, and the positive and negative likelihood ratios were 4.5 and 0.45, respectively.ConclusionsA high blood lactate level at admission is independently associated with and predictive of in-hospital mortality in the general population of critically ill children.
The vascular endothelial growth factor (VEGF) family, the regulator of blood and lymphatic vessels, is mostly investigated in the tumor and ophthalmic field. However, the functions it enjoys can also interfere with the development of atherosclerosis (AS) and further diseases like coronary heart disease (CHD). The source, regulating mechanisms including upregulation and downregulation, target cells/tissues, and known functions about VEGF-A, VEGF-B, VEGF-C, and VEGF-D are covered in the review. VEGF-A can regulate angiogenesis, vascular permeability, and inflammation by binding with VEGFR-1 and VEGFR-2. VEGF-B can regulate angiogenesis, redox, and apoptosis by binding with VEGFR-1. VEGF-C can regulate inflammation, lymphangiogenesis, angiogenesis, apoptosis, and fibrogenesis by binding with VEGFR-2 and VEGFR-3. VEGF-D can regulate lymphangiogenesis, angiogenesis, fibrogenesis, and apoptosis by binding with VEGFR-2 and VEGFR-3. These functions present great potential of applying the VEGF family for treating CHD. For instance, angiogenesis can compensate for hypoxia and ischemia by growing novel blood vessels. Lymphangiogenesis can degrade inflammation by providing exits for accumulated inflammatory cytokines. Anti-apoptosis can protect myocardium from impairment after myocardial infarction (MI). Fibrogenesis can promote myocardial fibrosis after MI to benefit cardiac recovery. In addition, all these factors have been confirmed to keep a link with lipid metabolism, the research about which is still in the early stage and exact mechanisms are relatively obscure. Because few reviews have been published about the summarized role of the VEGF family for treating CHD, the aim of this review article is to present an overview of the available evidence supporting it and give hints for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.